"""ndarray: Base multidimensional array class This is the base multidimensional array class which implements all structural array operations but treats the array contents as opaque objects $Id: generic.py,v 1.84 2006/06/13 11:57:42 jaytmiller Exp $ """ import types as _types import math as _math import operator import numerictypes as _nt import sys import _bytes import memory import numinclude import copy import copy_reg from _ndarray import _ndarray, _isIntegerSequence, product, _alignment, ravel import _ufunc _PROTOTYPE = 0 # Set to 1 to activate Python prototypes of C code. _UPDATEDICT = 0x1000 # views update from dict of original _WRITABLE = 0x400 # array is WRITABLE def _buffer_reduce(b): """Converts a "buffer" object to a pickling reduction tuple.""" return (memory.memory_from_string, (str(b),)) copy_reg.pickle(memory.MemoryType, _buffer_reduce, memory.memory_from_string) # Register the buffer object. This approach should work for any object # supporting str returning a memory image. # copy_reg.pickle(_types.BufferType, _buffer_reduce, memory.memory_from_string) NewAxis = None _IOBLOCKSIZE = 1024**2 def _product(shape): n = 1 for s in shape: n *= s return n def getShape(shape, *args): """Verifies that this is a legal shape specification and returns tuple Shape can be an integer or a sequence of integers. Also can pass several integer arguments. Raises an exception on problems. """ try: if shape is () and not args: return () if type(shape) in [_types.IntType, _types.LongType]: shape = (shape,) + args else: if args: raise TypeError shape = tuple(shape) if _isIntegerSequence(shape): return shape except TypeError: pass raise TypeError("Shape must be sequence of integers") def _broadcast(arr, sshape): """Return broadcast view of arr, else return None.""" ashape = arr._shape # Just return arr if they have the same shape if sshape == ashape: return arr srank = len(sshape) arank = len(ashape) if arank > srank: return None if arank == srank: astrides = list(arr._strides) else: astrides = [0]*(srank-arank) + list(arr._strides) ashape = sshape[0:srank-arank] + ashape if ashape != sshape: for i in range(srank): if sshape[i] != ashape[i]: if ashape[i] == 1: astrides[i] = 0 else: raise ValueError("Arrays have incompatible shapes") tarr = arr.view() tarr._shape = sshape tarr._strides = tuple(astrides) return tarr def _common_shape(sshape, ashape): """Return broadcast shape common to both sshape and ashape.""" # Just return both if they have the same shape if sshape == ashape: return sshape srank, arank = len(sshape), len(ashape) # do a special comparison of all dims with size>1 if srank > arank: newrank = srank ashape = sshape[:newrank-arank] + ashape else: newrank = arank sshape = ashape[:newrank-srank] + sshape newshape = list(sshape) for i in range(newrank): if sshape[i] != ashape[i]: if sshape[i] == 1: newshape[i] = ashape[i] elif ashape[i] == 1: newshape[i] = sshape[i] else: raise ValueError("Arrays have incompatible shapes"); return tuple(newshape) def _common_shapes(indexArrays): """determines the mutual broadcast shape of indexArrays.""" cshape = () for i in indexArrays: if isinstance(i, NDArray) and i._strides is not None: cshape = _common_shape(cshape, i._shape) return cshape def _broadcast_all(indexArrays, cshape): """returns a list of views of 'indexArrays' broadcast to shape 'cshape'""" result = [] for i in indexArrays: if isinstance(i, NDArray) and i._strides is not None: result.append(_broadcast(i, cshape)) else: result.append(i) return tuple(result) def _nWayBroadcast( indexArrays ): """return views of indexArrays broadcast to their common shape, modifying the indexArrays sequence but not the original arrays. """ # original function was impure... so keep side effects. cshape = _common_shapes(indexArrays) indexArrays[:] = list(_broadcast_all(indexArrays, cshape)) return indexArrays def _takeShape(scattered, indexArrays): """computes the shape of the result of a take/put operation""" nindexArrays = len(indexArrays) arrDims = len(scattered._shape) if nindexArrays > arrDims: raise ValueError("Specified too many indices...") # Convert indices into suitable index numarray for i in range(len(indexArrays)): indexArrays[i] = _nc.asarray(indexArrays[i], _nt.MaybeLong) indexArrays = _nWayBroadcast(indexArrays) # convert to numarray and broadcast # Figure out output array shape and basic blocksize N leftOver = arrDims - nindexArrays if nindexArrays < arrDims: N = scattered._strides[ nindexArrays - 1 ] # size of inner block nShape = scattered._shape[-leftOver:] else: N = scattered._itemsize nShape = () impliedShape = indexArrays[0]._shape + nShape return impliedShape, N def info(arr): arr.info() def SuitableBuffer(b): """SuitableBuffer(b) determines whether 'b' can be used as an NDArray buffer. This check is obsolete. """ return ((type(b) is _types.BufferType) or (type(b) is memory.MemoryType) or ((type(b) is _types.InstanceType) and ("__buffer__" in dir(b.__class__)) and ("resize" in dir(b.__class__)))) def ClassicUnpickler(cls, state): self = cls.__new__(cls) self.__setstate__(state) return self ClassicUnpickler.__safe_for_unpickling__ = 1 class NDArray(_ndarray): """Multi-dimensional array abstract base class This class defines the structural operations common to numarray. Subclasses must provide the semantical interpretation of elements, including the __str__, __repr__, _getitem, and _setitem methods. NDArray(shape=None, itemsize=0, buffer=None, byteoffset=0, bytestride=0, aligned=1) shape The shape of the array. itemsize The size in bytes of a single element. buffer An object meeting the Python buffer protocol which will store the array data. If None is specified, a memory oject is created. byteoffset The offset in bytes from the base of buffer to the array data. bytestride The distance in bytes between elements. Defaults to itemsize. aligned A flag describing whether buffer+offset is aligned for itemsize. Given an array index of arr[k,j,i] it is always true that the byte offset of the element in the array is computed thusly: with shape[0] --> dimension of current view strides[0] --> bytestride for k index dimension element_byte_offset = byteoffset + ( i*strides[2] + j*strides[1] + k*strides[0]) where 0 <= i < shape[2], 0 <= j < shape[1], 0 <= k < shape[0] For contiguous numarray strides[i] = shape[i+1]*strides[i+1] Summary of attribute meanings: _data buffer with data for the array _shape dimensions of the array _byteoffset The byte offset of the first element from the beginning of the buffer _bytestride The separation between items in bytes. _itemsize The size of items in bytes """ if _PROTOTYPE: def __init__(self, shape=(), itemsize=1, buffer=None, byteoffset=0, bytestride=None, byteorder=sys.byteorder, aligned=1): _ndarray.__init__(self); self._itemsize = itemsize self._byteoffset = byteoffset self._shape = getShape(shape) if bytestride is None: self._bytestride = itemsize elif bytestride < itemsize: raise ValueError('bytestride must be >= itemsize') else: self._bytestride = bytestride if buffer is not None: self._data = buffer else: size = self._bytestride * self.nelements() self._data = memory.new_memory(size) self._strides = self._stridesFromShape() def __len__(self): if len(self._shape): return int(self._shape[0]) else: raise ValueError("Rank-0 array has no length.") def _universalIndexing(self, key, value=None): """Handles both getting (value == None) and setting (value != None)""" if isinstance(key, int) and len(self._shape) == 1: if key < 0: key += self._shape[0]; if not 0 <= key < self._shape[0]: raise IndexError("Index out of range") offset = self._strides[0]*key + self._byteoffset if value is None: return self._getitem(offset) else: return self._setitem(offset, value) if isinstance(value, (list,tuple)): fvalue = self.factory(value) else: fvalue = value # Make simple types and arrays into a 1-element tuple. if isinstance(key, (_types.SliceType, _types.EllipsisType, int, long, _nc.NumArray)): tkey = (key,) elif isinstance(key, list): if isinstance(key[0], _types.SliceType): tkey = tuple(key) else: tkey = (key,) else: tkey = key if not isinstance(tkey, tuple): raise IndexError("Illegal index") tkey2 = list(tkey) if _isIntegerSequence(tkey2): return self._simpleIndexing(tkey2, fvalue) elif self._isSlice(tkey): # i.e., no numarrays... return self._slicedIndexing(tkey2, fvalue) else: return self._arrayIndexing(tkey2, fvalue) def _simpleIndexing(self, key, value): if len(key) > len(self._shape): raise IndexError("Too many indices") offset = self._getByteOffset(key) if len(key) == len(self._shape): # single values if value is None: return self._getitem(offset) else: self._setitem(offset, value) else: # subarray retarr = self.view() retarr._shape = self._shape[len(key):] retarr._strides = self._strides[len(key):] retarr._byteoffset = offset if value is None: return retarr else: retarr._copyFrom(value) def _fixSlice(self, slice, shape): start, stop, step = slice.start, slice.stop, slice.step # print "_fixSlice:", start, stop, step, shape if step is None: step = 1 elif step == 0: raise IndexError("slice step of zero not allowed") if step > 0: if start is None: start = 0 elif start > shape: start = shape elif start < 0: start += shape if start < 0: start = 0 if stop is None: stop = shape elif stop > shape: stop = shape elif stop < 0: stop += shape if stop < 0: stop = 0 else: if start is None: start = shape-1 elif start > shape: start = shape-1 elif start < 0: start += shape if start < 0: start = 0 if stop is None: stop = -1 elif stop > shape: stop = shape-1 elif stop < 0: stop += shape if stop < 0: stop = -1 # print "_fixSlice ->", int(start), int(stop), int(step) return int(start), int(stop), int(step) def _slicedIndexing0(self, key, value, dim): if not len(key): if value is None: return self else: if self.shape is (): self[()] = value return None else: return self._copyFrom(value) else: slice, rest = key[0], key[1:] if isinstance(slice, int): if slice < 0: slice += self._shape[dim] if not (0 <= slice < self._shape[dim]): raise IndexError("Index out of range") self._byteoffset += slice * self._strides[dim] self._strides = self._strides[:dim] + self._strides[dim+1:] self._shape = self._shape[:dim] + self._shape[dim+1:] else: start, stop, step = self._fixSlice(slice, self._shape[dim]) strided = int(_math.ceil(float(stop - start)/step)) if strided < 0: strided = 0 self._byteoffset += self._strides[dim] * start self._shape = self._shape[:dim] + (strided,) + \ self._shape[dim+1:] self._strides = self._strides[:dim] + \ (self._strides[dim]*step,) + \ self._strides[dim+1:] dim += 1 return self._slicedIndexing0(rest, value, dim) def _slicedIndexing(self, key, value=None): result = self.view() indexed = 0 for i in range(len(key)): if (isinstance(key[i], (int, long)) or isinstance(key[i], _types.SliceType)): indexed += 1 elif isinstance(key[i], _types.EllipsisType): non_new = 0 for k in key[i+1:]: if k is not NewAxis: non_new += 1 key[i:i+1] = [slice(None,None,None)] * \ (len(self._shape)-indexed-non_new) break for j in range(i,len(key)): if isinstance(key[j], _types.EllipsisType): key[j] = slice(None,None,None) keylen = len(key) for i in range(keylen): if key[i] is NewAxis: key[i] = slice(0,1,1) if i > 0: which = i - 1 else: which = 0 result._strides = result._strides[:i] + \ (result._strides[which],) + \ result._strides[i:] result._shape = result._shape[:i] + \ (1,) + \ result._shape[i:] keylen = keylen - 1 if keylen > len(self._shape): raise IndexError("too many slices for array shape") return result._slicedIndexing0(key, value, 0) def _taker(self, indices, result): for i in xrange(len(indices[0])): index = tuple([ ind[i] for ind in indices]) result[i] = self[index] return result def _putter(self, indices, values): for i in xrange(len(indices[0])): index = tuple([ind[i] for ind in indices]) self[index] = values[i] def _view(self): """Return a new array object, with the same reference to the data buffer""" arr = self.__class__.__new__(self.__class__) arr.__dict__.update(self.__dict__) # Handle attributes explicitly arr._data = self._data arr._shape = self._shape arr._byteoffset = self._byteoffset arr._bytestride = self._bytestride arr._itemsize = self._itemsize arr._strides = self._strides arr._aligned = self._aligned return arr def swapaxes(self, axis1, axis2): """swapaxes() interchanges axis1 and axis2. """ n = len(self._shape) if axis1 < 0: axis1 += n if axis2 < 0: axis2 += n if n <= 1 or axis1 == axis2: return # skip 0D, 1D, and same axis swaps. if axis1 not in range(n) or axis2 not in range(n): raise ValueError("Specified dimension does not exist") if axis1 > axis2: # Make sure that axes are strictly ordered axis1, axis2 = axis2, axis1 # Just swap the shape and stride elements self._shape = (self._shape[0:axis1] + (self._shape[axis2],) + self._shape[axis1+1:axis2] + (self._shape[axis1],) + self._shape[axis2+1:]) self._strides = (self._strides[0:axis1] + (self._strides[axis2],) + self._strides[axis1+1:axis2] + (self._strides[axis1],) + self._strides[axis2+1:]) def ravel(self): """ravel(self) setshapes 'self' into an equivalent 1D array. """ self.setshape((self.nelements(),)) size = _ndarray.nelements # more portable synonym def __getstate__(self): """returns state of NDArray for pickling.""" state = copy.copy(self.__dict__) state["_version"] = numinclude.version state["_bytestride"] = self._bytestride state["_byteoffset"] = self._byteoffset state["_shape"] = self._shape state["_strides"] = self._strides state["_data"] = self._data state["_itemsize"] = self._itemsize state["_flags"] = self._flags return state def __setstate__(self, state): """restores state of NDArray after unpickling.""" self.__dict__.update(state) self._bytestride = state["_bytestride"] self._byteoffset = state["_byteoffset"] self._shape = state["_shape"] self._strides = state["_strides"] self._data = state["_data"] self._itemsize = state["_itemsize"] try: self._flags = state["_flags"] except: self._flags |= _UPDATEDICT def __nonzero__(self): raise RuntimeError("An array doesn't make sense as a truth value. Use any(a) or all(a).") def __copy__(self): """support for copy.copy()""" return self.copy() def __deepcopy__(self, memo): """support for copy.deepcopy()""" return self.copy() def __reduce__(self): """__reduce__ returns the pickling "reduction tuple" for an NDArray. Used for NDArray derived from C basetypes, not classic classes. """ return (ClassicUnpickler, (self.__class__,)+(self.__getstate__(),)) def __repr__(self): name = self.__class__.__name__ return name + "(" + \ arrayprint.array2string(self, separator=", ", prefix=name +"(")+ ")" def __str__(self): return arrayprint.array2string(self, separator=" ", style=str) def itemsize(self): """Size (in bytes) of an array element""" return self._itemsize def is_c_array(self): """is_c_array() returns 1 iff the array is aligned and contiguous, and returns 0 otherwise.""" return self.isaligned() and self.iscontiguous() def _stridesFromShape(self): """Compute the strides from shape for a contiguous array""" ndim = len(self._shape) if ndim: strides = [self._bytestride]*ndim for i in xrange(ndim-2, -1, -1): strides[i] = strides[i+1] * self._shape[i+1] return tuple(strides) else: return () # scalar def _arrayIndexing(self, key, value): for item in key: if isinstance(item, (_types.SliceType, _types.EllipsisType)): raise IndexError("Cannot mix numarray and slices as indices") bool = (isinstance(key[0], _nc.NumArray) and key[0].type() is _nt.Bool) if bool and len(key) != 1: raise ValueError("Invalid boolean key; specify one array only.") if value is None: if bool: return self._take(ufunc.nonzero(key[0])) else: return self._take(key) else: if bool: putmask( self, key[0], value) # self._put( ufunc.nonzero(key[0]), value ) else: self._put( key, value ) def _isSlice(self, key): for item in key: if isinstance(item, (_nc.NumArray, list)): return 0 if not isinstance(item, (int, long, _types.NoneType, _types.SliceType, _types.EllipsisType)): raise IndexError("index is not of legal form") return 1 def _broadcast(self, arr): """Return broadcast view of arr, else return None.""" return _broadcast(arr, self._shape) def _dualbroadcast(self, arr): """Return broadcast views both self and arr, else return (None,None).""" sshape = self._shape ashape = arr._shape # Just return both if they have the same shape if sshape == ashape: return (self, arr) srank = len(sshape) arank = len(ashape) # do a special comparison of all dims with size>1 if srank > arank: newrank = srank sstrides = list(self._strides) ashape = sshape[:newrank-arank] + ashape astrides = [0]*(newrank-arank) + list(arr._strides) else: newrank = arank astrides = list(arr._strides) sshape = ashape[:newrank-srank] + sshape sstrides = [0]*(newrank-srank) + list(self._strides) newshape = list(sshape) for i in range(newrank): if sshape[i] != ashape[i]: if sshape[i] == 1: newshape[i] = ashape[i] sstrides[i] = 0 elif ashape[i] == 1: newshape[i] = sshape[i] astrides[i] = 0 else: raise ValueError("Arrays have incompatible shapes"); newshape = tuple(newshape) tself, tarr = self, arr if self._shape != newshape: tself = self.view() tself._shape = newshape tself._strides = tuple(sstrides) if arr._shape != newshape: tarr = arr.view() tarr._shape = newshape tarr._strides = tuple(astrides) return tself, tarr def _copyFrom(self, arr): """Copy elements from another array. This is the generic version. Subclasses (such as numarray) may override this method """ # Arrays must be shape congruent and have the same itemsize. # xxx Don't handle broadcasting yet. if (self._shape not in [(1,), (), arr._shape] or arr._shape not in [(1,), (), self._shape]): raise ValueError("Arrays have inconsistent sizes") if arr._itemsize != self._itemsize: raise ValueError("Arrays must have the same itemsize") cfunc = _bytes.functionDict['copyNbytes'] sShape = (arr._shape == ()) and () or self._shape cfunc(sShape, arr._data, arr._byteoffset, arr._strides, self._data, self._byteoffset, self._strides, self._itemsize) def setshape(self, shape, *args): """Change array shape in place. Call as setshape(i,j,k) or setshape((i,j,k)).""" if not self.iscontiguous(): raise ValueError("Can't reshape non-contiguous numarray") shape = list(getShape(shape, *args)) # look for index = -1, which indicates an expandable dimension nelements = self.nelements() negcount = shape.count(-1) if negcount > 1: raise ValueError("no more than one dimension can have value -1") elif negcount == 1: tnelements = abs(product(shape)) shape[shape.index(-1)] = nelements/tnelements newnelements = product(shape) if newnelements == nelements: self._shape = tuple(shape) self._strides = self._stridesFromShape() else: raise ValueError("New shape is not consistent with the old shape") def getshape(self): return self._shape shape = property(getshape, setshape, doc="tuple of array dimensions") def getrank(self): return self.rank # For backward compat only def getflat(self): if self.iscontiguous(): a = self.view() else: a = self.copy() a.ravel() return a def setflat(self, flat): a = self.view() a.ravel() a[:] = flat flat = property(getflat, setflat, doc="access to array as 1D") def copy(self): """Return a new array with the same shape and type, but a copy of the data""" arr = self.view() arr._data = memory.new_memory(arr._itemsize * arr.nelements()) arr._byteoffset = 0 arr._bytestride = arr._itemsize arr._strides = arr._stridesFromShape() arr._itemsize = self._itemsize # now copy data, if possible using larger units if product(self._shape): fname = "copy"+str(self._itemsize)+"bytes" copyfunction = ((self.isaligned() and _bytes.functionDict.get(fname)) or _bytes.functionDict["copyNbytes"]) copyfunction(arr._shape, self._data, self._byteoffset, self._strides, arr._data, 0, arr._strides, arr._itemsize) return arr def tostring(self): """Return a string with a binary copy of the array Copies are always contiguous, but no conversions are implied """ if self.rank == 0: self = self.view() self.shape = (1,) return _bytes.copyToString(self._shape, self._data, self._byteoffset, self._strides, self._itemsize) def tofile(self, file): """Write the array as a binary image to a file. If file is a string, it attempts to open a file with that name, otherwise it assumes file is a file object. At the moment if special positioning is needed in the file one must do that with the file object beforehand. More options may be added to this method to allow positioning or appends. Note that for numerical data, the system byte order in which the data is represented is *not* recorded in the file. This renders the file non-portable because extra information is required to interpret it on different machines than the one it was created on. """ name = 0 if isinstance(file,(unicode,str)): name = 1 file = open(file, 'wb') niter = _IOBLOCKSIZE // self._itemsize if niter > 0: if self.nelements() != 0: # skip zero length arrays. indexlevel, blockingparameters = \ _ufunc._getBlockingParameters(self._shape, niter) self._tofileByBlocks(file, [], indexlevel, blockingparameters) if name: file.close() else: # very large items v = self.view() v._itemsize = 1 v._shape = self._shape + (self._itemsize,) v._strides = self._strides + (1,) v.tofile(file) def _tofileByBlocks(self, file, dims, indexlevel, blockingparameters): """Write the array to a file repeatedly in blocks This is done similarly to ufunc._doOverDimensions """ level = len(dims) if level == indexlevel: nregShapeIters, shape, leftover, leftoverShape, = blockingparameters currentIndex = 0 tshape = shape[:] for i in xrange(nregShapeIters + leftover): if i==nregShapeIters: tshape = leftoverShape tdims = dims + [currentIndex,] s = _bytes.copyToString( tshape, self._data, self._getByteOffset(tdims), self._strides[-len(tshape):], self._itemsize) file.write( s ) currentIndex += shape[0] else: # recurse for i in xrange(self._shape[level]): tdims = dims + [i] self._tofileByBlocks(file, tdims, indexlevel, blockingparameters) def transpose(self, axes=None): """transpose() re-shapes the array by permuting it's dimensions as specified by 'axes'. If 'axes' is none, transpose returns the array with it's dimensions reversed. """ slen = len(self._shape) if axes == None: axes = range(slen) axes.reverse() if len(axes) != slen: raise ValueError("Wrong number of axes in tranpose") tax = list(axes[:]) tax.sort() if tax != range(slen): raise ValueError("Duplicate or missing transpose axes") nshape, nstrides = [],[] for i in axes: nshape.append(self._shape[i]) nstrides.append(self._strides[i]) self._shape = tuple(nshape) self._strides = tuple(nstrides) def _clone(self, shape): """returns an empty array identical to 'self' but with 'shape'. """ c = self.copy() c.resize(shape) return c def _fix_pt_indices(self, indices): indices = _nc.array(indices, type=_nt.MaybeLong) dt = range(len(indices._shape)) indices = transpose(indices, dt[1:] + dt[0:1]) indices = indices.copy() # make contiguous return indices def _take(self, indices, **keywds): indices = list(indices) impliedShape, N = _takeShape(self, indices) result = self._clone(shape=impliedShape) indices = self._fix_pt_indices(indices) self._taker(indices, result) return result def _put(self, indices, values, **keywds): indices = list(indices) impliedShape, N = _takeShape(self, indices) if not isinstance(values, self.__class__): values = self.factory( values ) values = _broadcast( values, impliedShape ) indices = self._fix_pt_indices(indices) self._putter(indices, values) def take(self, *indices, **keywords): return take(self, *indices, **keywords) def put(self, *indices, **keywords): return put(self, *indices, **keywords) def nonzero(self): return ufunc.nonzero(self) def resize(self, shape, *args): """ resize() shrinks/grows 'self' to new 'shape', possibly replacing the underlying buffer object. """ shape = getShape(shape, *args) nlen = product(shape) if nlen < 0: raise ValueError("Negative shape dims don't work with resize") olen = self.nelements() if (isinstance(self._data, _types.BufferType) or isinstance(self._data, memory.MemoryType)): if self.iscontiguous(): oself = self.view() else: oself = self.copy() self._data = memory.new_memory(nlen*self._itemsize) self._bytestride = self._itemsize self._byteoffset = 0 blen = min(nlen, olen) self.ravel() oself.ravel() self[:blen] = oself[:blen] else: # Memmap self._data.resize(nlen*self._itemsize) self._shape = (nlen,) self._strides = self._stridesFromShape() if olen: # use any existing data as a pattern to be repeated if nlen > olen: offset = olen while offset+olen <= nlen: self[offset:offset+olen] = self[0:olen] offset += olen self[offset:nlen] = self[0:nlen-offset] else: # zero fill resized zero-length numarray self[:] = 0 self._shape = shape self._strides = self._stridesFromShape() return self def repeat(self, repeats, axis=0): """repeat() returns a new array with each element 'a[i]' repeated 'r[i]' times. """ return repeat(self, repeats, axis) def factory(self, *args, **keys): """factory(...) calls the array(...) factory function defined in the source module where the class of 'self' was defined. """ module = sys.modules[self.__class__.__module__] return module.array(*args, **keys) def astype(self, type=None): #default so numarray.array works for NDArrays return self.copy() def sinfo(self): """sinfo() returns a string describing key attributes of an array.""" s = "" s += "class: " + repr(self.__class__) + "\n" s += "shape: " + repr(self._shape) + "\n" s += "strides: " + repr(self._strides) + "\n" s += "byteoffset: " + repr(self._byteoffset) + "\n" s += "bytestride: " + repr(self._bytestride) + "\n" s += "itemsize: " + repr(self._itemsize) + "\n" s += "aligned: " + repr(self.isaligned()) + "\n" s += "contiguous: " + repr(self.iscontiguous()) + "\n" s += "buffer: " + repr(self._data) + "\n" s += "data pointer: 0x%08x (DEBUG ONLY)\n" % (self._fragile_data,) return s def info(self): """info() prints out the key attributes of an array.""" sys.stdout.write(self.sinfo()) def reshape(arr, shape, *args): """Returns a reshaped *view* of array if possible, else a *copy*. Call either as reshape(i,j,k) or reshape((i,j,k)). """ v = _nc.asarray(arr) if v.iscontiguous(): v = v.view() else: v = v.copy() v.setshape(shape, *args) return v if _PROTOTYPE: def ravel(array): """Returns a *view* of array reshaped as 1D.""" array = _nc.asarray(array) return reshape(array, (array.nelements(),)) def fromstring(datastring): pass def resize(array, shape): """Returns a *copy* of array, replicated or truncated to match new shape.""" array = _nc.array(array) array.resize(shape) # Assume array.resize() resizes in place. return array def transpose(array, axes=None): """Returns the transpose of a *view* of array""" v = _nc.asarray(array).view() v.transpose(axes) return v def sort(array, axis=-1, kind=''): """Returns a sorted *copy* of array.""" array = _nc.array(array) array.sort(axis,kind) return array def argsort(array, axis=-1,kind=''): """Returns an array of indices which, if "taken" from 'array', would sort 'array'. """ array = _nc.asarray(array) return array.argsort(axis,kind) def lexsort(keys, axis=-1): """Returns index array that lexigraphically sorts on keys. This is like taking the first letter from the first key, the second from the second key, etc., and forming a 'word.' The words are then indirectly sorted on the first key, then the second, etc. This will order things into 'alphabetic order' for the word *spelled backwards*. To get alphabetic order, the sort must start on the last letter and proceed to the first. """ if not isinstance(keys,(_types.ListType, _types.TupleType)) : keys = (keys,) if axis == -1 : keys = [_nc.asarray(x) for x in keys] shps = [x.getshape() for x in keys] ashp = shps[0] if reduce(operator.__or__, [x != ashp for x in shps]) : raise KeyError, 'key arrays must have the same shape' w = _nc.array(shape=ashp, type=_nt.Long) w[...,:] = _nc.arange(ashp[-1], type=_nt.Long) for x in keys : ufunc._broadcast_indirect_sort(x, w, 'amergesort') return w else : map(lambda x : x.swapaxes(axis,-1), keys) w = lexmergesort(keys) map(lambda x : x.swapaxes(axis,-1), keys) w.swapaxes(axis,-1) return w def argmin(array, axis=-1): """Returns the indices of the minumum elements of 'array' taken along 'axis'.""" array = _nc.asarray(array) return array.argmin(axis) def argmax(array, axis=-1): """Returns the indices of the maximum elements of 'array' taken along 'axis'.""" array = _nc.asarray(array) return array.argmax(axis) def swapaxes(array, axis1, axis2): """Returns a *view* of array with axis1 and axis2 interchanged.""" if array is None: return array v = _nc.asarray(array).view() v.swapaxes(axis1, axis2) return v def where(condition, x=None, y=None, out=None): """where() returns an array shaped like 'condition' with elements selected from 'x' or 'y' by the 1 or 0 value of each condition element, respectively. If neither 'x' nor 'y' is specified, where acts as a synonym for nonzero(). """ if x is None and y is None: if out is None: return ufunc.nonzero(condition) else: raise ValueError("single parameter where() does not support output array") else: if x is None or y is None: raise ValueError("Invalid parameter list") return choose(ufunc.not_equal(condition, 0), (y,x), out) def clip(m, m_min, m_max): """clip() returns a new array with every entry in m that is less than m_min replaced by m_min, and every entry greater than m_max replaced by m_max. """ selector = ufunc.less(m, m_min)+2*ufunc.greater(m, m_max) return choose(selector, (m, m_min, m_max)) def _shape0(a): if a.rank == 0: return 1 else: return a._shape[0] def _concat(arrs): """_concat handles the simplest case of concatenating numarray along the zero-th axis. """ combinedLength = reduce(operator.add, [ _shape0(a) for a in arrs ]) rShape = arrs[0]._shape[1:] destShape = (combinedLength,) + tuple(rShape) try: convType = ufunc._maxPopType(arrs) except TypeError: dest = arrs[0]._clone(shape=destShape) else: try: dest = arrs[0].__class__(shape=destShape, type=convType) except TypeError: dest = arrs[0].__class__(shape=destShape) ix = 0 for a in arrs: if a._shape[1:] != rShape: raise ValueError("_concat array shapes must match except 1st dimension") dest[ix:ix+_shape0(a)]._copyFrom(a) ix += _shape0(a) return dest def concatenate(arrs, axis=0): """concatenate() joins the sequence of numarray 'arrs' in a into a single array along the specified 'axis'. """ arrs = map(_nc.asarray, arrs) if axis == 0: return _concat(arrs) else: return swapaxes(_concat([swapaxes(m,axis,0) for m in arrs]), axis, 0) # ------------------------------------------------------------------------ # import these last so module dependencies don't cause problems import numarraycore as _nc import ufunc from ufunc import choose, _take, take, _put, put import arrayprint # ------------------------------------------------------------------------ def _compress(condition, a): return _take(a, ufunc.nonzero(condition)) def compress(condition, a, axis=0): """compress selects members of array 'a' along 'axis' which correspond to non-zero members of 'condition'. """ if axis == 0: return _compress(condition, a) else: return swapaxes( _compress(condition, swapaxes(a, 0, axis)), 0, axis) def _repeat(array, repeats): if ufunc._isScalar(repeats): repeats = (repeats,)*len(array) else: repeats = _nc.asarray(repeats, type=_nt.MaybeLong) total = ufunc.add.reduce(repeats) newshape = (total,)+array._shape[1:] newarray = array.__class__(shape=newshape, type=array._type) newi = 0; for i in range(len(repeats)): limit = repeats[i] for j in range(limit): newarray[newi+j] = array[i] newi += limit return newarray def repeat(array, repeats, axis=0): """repeat() returns a new array with each element 'a[i]' repeated 'r[i]' times. """ if axis == 0: return _repeat(_nc.asarray(array), repeats) else: return swapaxes( _repeat(swapaxes(array, 0, axis), repeats), 0, axis) def indices(shape, type=None): """indices(shape, type=None) returns an array representing a grid of indices with row-only, and column-only variation. """ shape = tuple(shape) a = concatenate(ufunc.nonzero(_nc.ones(shape))) a.setshape((len(shape),)+shape) if type is not None: a = a.astype(type) return a def fromfunction(function, dimensions, type=None): # from Numeric """fromfunction() returns an array constructed by calling function on a tuple of number grids. The function should accept as many arguments as there are dimensions which is a list of numbers indicating the length of the desired output for each axis. """ return apply(function, tuple(indices(dimensions, type))) def _broadcast_or_resize(a, b): try: r = a._broadcast(b) except ValueError: r = resize(b, a.nelements()) r.setshape(a.getshape()) return r def putmask(array, mask, values): """putmask() sets elements of 'array' for which 'mask' is non-zero to the corresponding element in 'values'. 'array' must be an array. """ bmask = _nc.asarray(mask) bvalues = _nc.asarray(values) if bmask.nelements() == array.nelements(): if bmask._shape != array._shape: bmask = bmask.view() bmask.setshape(array.getshape()) else: bmask = _broadcast_or_resize(array, bmask) bvalues = _broadcast_or_resize(array, bvalues) choose(bmask != 0, (array, bvalues), array)