Gravity meter S-99

Power Supply & Platform Control Unit test points

Click here to get a PDF version (printer friendly) of this document.

You need at least a multimeter to perform these tests; an oscilloscope is, however, best.

1. Power supply test

The power supply has three testpoints, phase A, B and C. These are the gyro spin motor excitation voltages. The motor is 3-phase AC, driven by 200 Hz sinusoids, 120° phase shifted.

The phase voltages can be measured in two ways, a) Neutral (0V) to Line, or b) Line to Line.

1.1 Phase voltage

1.1.1 Using multimeter.

Meter setup: AC. Measure between 0V and each phase. Also measure frequency, if the multimeter has this capability.

Test Point	Voltage	Frequency	
φA	8.1 ± 0.3 Vrms	$200 \text{ Hz} \pm \text{TBD}$	
φB	8.1 ± 0.3 Vrms	$200 \text{ Hz} \pm \text{TBD}$	
φC	8.1 ± 0.3 Vrms	$200 \text{ Hz} \pm \text{TBD}$	
φΑ_ φΒ	14.1 ± 0.2 Vrms		
φΑ_ φC	14.1 ± 0.2 Vrms		
φΒ_ φC	14.1 ± 0.2 Vrms		

TBD = To be determined.

1.1.2 Using oscilloscope.

Measure between 0V and each phase.

Note: Do not measure between phases by attaching the probe's ground clip to one of the phases - you risk making a short circuit if the scope's ground is tied to power supply 0 V. Instead make a differential measurement using two probes, ground clips to 0V, and then subtract ch.2 from ch.1.

The figure on the right shows phase A and B. Peak-to-peak value is approx 24 V. The phase difference can be measured to $(1.7\text{ms}/5\text{ms})*360^\circ = 122^\circ$; the cursor readout is however not very accurate, so this just indicates the 120° phase shift.

The signals are not "pure" 200 Hz sinusoids. If a spectral decomposition (FFT) is performed the harmonic distortion can be measured. The amplityde of the 3rd harmonic (600 Hz) should be less then 1% of the 1st harmonic (200 Hz). It was mesured to 1.22% (refer to figure on the right).

Data from Tektronic oscilloscope TDS210. Calculated by Tektronix's

Voltage = 8.21 V	olts	Current =			Power =		
/oltage THD = 1 Power Factor = nstantaneous Po	.28% wer =		Current TH Displacem Reactive F		ID = ent Power Factor = Power =		
	Freq	Voltage RMS	Voltage % F	Voltage Phase	Current RMS	3	
Fundamental	200 Hz	8.2 V	100.00%	0.0		1	
Harmonic 2	400 Hz	23.7 mV	0.29%	110			
Harmonic 3	600 Hz	99.9 mV	1.22%	4.09			
Harmonic 4	800 Hz	4.9 mV	0.06%	130		1	
Harmonic 5	1000 Hz	19.8 mV	0.24%	16.8		-	
Harmonic 6	1.2 kHz	3.06 mV	0.04%	-173			
Harmonic 7	1.4 kHz	8.42 mV	0.10%	27.8			
Harmonic 8	1.6 kHz	4.8 mV	0.06%	144		1	
Harmonic 9	1.8 kHz	2.29 mV	0.03%	173		-	
Harmonic 10	2 kHz	1.68 mV	0.02%	-107			

WaveStar software.

2. Platform control unit tests

The testpoints are located on a small printed circuit board inside the Platform Control Unit, below the metal lid - see the figure to the right.. Learn the "nomenclature" - it makes testing easier:

X = Cross L = Long G = Gyro A = Accelerometer T = TorqueM = Motor

Note that "torque" applies to two components: a) The motors that keep the platform level, and b) the gyros, where the torque input signal is used to compensate for long-term horizontal reference changes (e.g. earth rotation). If you're not aware of this it can be a bit confusing.

Program switches SPRING TENSION and ALARM set to OFF.

INPUTS XTM DUTPUTS +28

No.	Test- points	Ref.	Scope image	Description
1	В	0V		CPI sensor output, identical to front panel meter. Slew the beam to end positions. Range: -9.8 Vdc 9.9 Vdc.
2	XG	0V	Yes	Cross Axis Gyro output signal By turning off the Cross Torque Motor switch you can see a 200Hz, 1V peak-to-peak sine wave on an oscilloscope, when the platform is rotated in the cross axis direction. Chooce IRQ as trigger for the oscilloscope. Multimeter (select AC measurements): 0.4 Vrms max. output.
3	LG	0V		Long Axis Gyro output signal, similar to XG.
4	XA	0V		Cross Axis Accelerometer output. By turning off the Cross Torque Motor switch you can see a DC- voltage on an oscilloscope or a voltmeter, when the platform is rotated in the cross direction. Signal range: -12.6Vdc 11.9Vdc.
5	LA	0V		Long Axis Accelerometer output, similar to XA. Signal range: -12.6Vdc 12.0Vdc.
6	XGT	0V	Yes	Cross Axis Gyro Torque - input signal to gyro. Due to time integral this signal build slowly to saturation. Cross Torque Motor switch = OFF. Signal range: -6.5 Vdc 8.7 Vdc
7	LGT	0V		Long Axis Gyro Torque, similar to XGT. Signal range: -6.0 Vdc 8.2 Vdc
8	XTM	0V	Yes	Cross Axis Torque Motor. Signal to motor that keeps platform level in cross axis. Cross Torque Motor switch = OFF. Signal range: -1.6 Vdc 1.5 Vdc
9	LTM	0V		Long Axis Torque Motor, similar to XTM. Signal range: -1.9 Vdc 1.6 Vdc
10	IRQ	0V	Yes	Interrupt Request. This is a digital clock signal. Only measure with oscilloscope! Square wave, approx. 50% duty cycle, 200 Hz, 0-4V peak-to-peak.
11	φA	0V		Gyro spin motor excitation voltage. 200 Hz, 24V peak-to-peak, 8.1V +/- 0.3V rms. > 40dB attenuation of 3rd harmonic 600Hz (means that 3rd harmonic's amplitude should be less then 1% of 1st harmonic's amplitude). Note: Identical to the Power Supply Unit testpoints!
12	φΒ	0V		As Phase A, with 120° phase shift.
13	φC	0V		As Phase B, with 120° phase shift.

DC voltages $\pm 28V$, ± 15 , $\pm 24V$, $\pm 5V$ can also be checked via UltraSys program.

<u>University of Bergen</u> <u>Institute of Solid Earth Physics</u> Allé gt. 41, N-5007 Bergen, NORWAY Tel: (+47) 5558 3420 / 21 Fax: (+47) 5558 9669 Email: <u>elab@ifjf.uib.no</u>

April 6, 2001 (OM)