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1. Introduction

• Enhanced reservoir characterization by seismic modelling requires a mathematical model that
accounts for the effects of microstructure and fluid flow on the overall wave characteristics.

• A unified model of rocks as viscoelastic composites have recently been developed.

• We have used a combination of stochastic integral equation methods and
fluid dynamic considerations involving several length scales.
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• It is important to focus on (aligned) cracks/fractures because
they tend control the flow of fluids (in different directions).

• Cracks/fractures can be characterized with seismics because they

– decrease P- and S-wave velocity.

– increase velocity dispersion and wave attenuation.

– increase pressure-dependence of velocity/attenuation.

– increase velocity and attenuation anisotropy.

– increase potential for stress-induced anisotropy.
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2. Stochastic wave propagation

• The (time-reduced) constitutive relation for a visco-elastic continuum:

Φ(x) = R(x)Ψ(x) (1)

• The stress-momentum vector:
Φ(x) = [σ(x),p(x)]T (2)

• The strain-velocity vector:
Ψ(x) = [ε(x),−iωu(x)]T (3)

• The stiffness-density matrix:

R(x) =

(

C(x) 0
0 ρ(x)

)

(4)
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• The effective constitutive relation for the (statistically homogeneous) medium as a whole:

〈Φ(x)〉 = R∗〈Ψ(x)〉 (5)

• 〈Φ(x)〉 is the ensemble-averaged stress-momentum vector.

• 〈Ψ(x)〉 is the ensemble-averaged strain-velocity vector.

• The problem is to determine the effective stiffness-density matrix R∗ by using the statistical
information we have about R(x).
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• A ‘dynamic equilibrium’ condition representing the EOM:

∇4 · Φ(x) = 0 (6)

• Generalized gradient operator:
∇4 ≡ [∇,−iω] (7)

• Decomposition of the stiffness-density matrix:

R(x) = R(0) + δR(x) (8)

• An arbitrary homogeneous reference medium:

R(0) =





C(0) 0
0 ρ(0)



 (9)

• The corresponding fluctuation:

δR(x) =

(

δC(x) 0
0 δρ(x)

)

(10)
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• A Lippmann-Schwinger-Dyson (LSD) type of integral equation for the local motion:

Ψ(x) = Ψ(0)(x) +
∫

dx′G(0)(x− x′)δR(x′)Ψ(x′) (11)

• Ψ(0)(x) is the strain-velocity vector associated with R(0).

• Generalized Green’s function:

G(0)(x) =





S(0)
x (x) M(0)

x (x)

S
(0)
t (x) M

(0)
t (x)



 (12)

• Here S(0)
x (x), M(0)

x (x), S
(0)
t (x) and M

(0)
t (x) are modified Green’s functions for the reference material.
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• Exact formal solution to the effective medium problem:

R∗ = R(0) + 〈T 〉
[

I + Ḡ〈T 〉
]−1

(13)

• The (yet to be determined) T matrix for the material also satisfies a LSD-type of integral equation:

T (x) = δR(x) + δR(x)
∫

dx′G̃(x− x′)T (x′) (14)

• A spatial invariant Greens matrix:

Ḡ =
∫

dx′G̃(x− x′) (15)

• A transformed generalized Green’s function:

G̃(x− x′) = G(0)(x− x′)eik·(x′−x) (16)
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3. Fluid dynamical considerations

• If ṽ(n) and ρ
(n)
f is the porosity and density of the nth cavity set, respectively, then the total fluid

mass mf is given by

mf =
Nc
∑

r=1

ṽ(r)ρ
(r)
f (17)

• We now require that the fluid mass in an arbitrary volume is conserved and that the average flow
of fluid is regulated by Darcy’s law, so that

∂mf

∂t
= ∇ ·





ρf

ηf

Γ · ∇pf



 (18)

where pf is the average (local) fluid pressure, ρf is the fluid mass density, ηf is the viscosity of
the fluid, and Γ is a second-rank tensor of permeability parameters. The tensor Γ represents
the overall permeability of the material (including all cavities) and is assumed to be spatially
invariant.

• The fluid pressure and density of the nth cavity set are related by

ρ0

ρ
(n)
f

= 1−
p

(n)
f

κf

(19)

where ρ0 is the density of the unstressed fluid, and κf is the fluid bulk modulus.
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• If a quasi-static stress field is imposed on the macroscopic specimen then the pressure p
(n)
f in the

fluid changes, due both to a change in porosity and to fluid flow.

• We have derived a higher-order expression for the change in porosity:

ṽ(n) − v(n)

v(n)
=
(

K̂
(n)
d

)

uupq

(

σ(0)
pq + δpqp

(n)
f

)

− S(0)
uupqδpqp

(n)
f , (20)

where v(n) is the unstressed porosity of the nth cavity set.

• We assume that the mass flow out of the nth set of cavities is controlled by an expression similar
to that of Hudson et al. (1996):

∂
(

ρ
(n)
f ṽ(n)

)

∂t
= −

v(n)ρ0

κfτ

(

p
(n)
f − pf

)

, (21)

where τ is a (squirt flow) relaxation time constant, which is proportional to the fluid viscosity ηf

and inversely proportional to a permeability constant.
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• A novel approximation for the effective compliance tensor of complex porous media:

S∗ = S(0) +
∑

r
v(r)K

(r)
d −

∑

r

v(r)K
(r)
d

1 + iωγ(r)τ
: (I2 ⊗ I2) :





Θ(ω)
∑

s

v(s)K
(s)
d

1 + iωγ(s)τ
+ iωτκfK

(r)





 (22)

• A frequency-dependent quantity reflecting the interconnected pores and cracks:

Θ(ω) = κf















(

1− κfS
(0)
uuvv

)

Nc
∑

r=1

v(r)

1 + iωγ(r)τ
+ κf

Nc
∑

r=1

v(r)
(

K
(r)
d

)

uuvv

1 + iωγ(r)τ
−

ikukvΓuvκf

ηfω















−1

(23)

• A frequency-independent quantity reflecting the response of a single cavity:

γ(n) = 1 + κf

(

K
(n)
d − S(0)

)

uuvv
(24)

• We have shown analytically that the above formulae is consistent with the classic
result of Gassmann (1951).
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4. Numerical examples

• Crack-induced anisotropy.

• Shear-wave splitting.

• The effect of crack-size.
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Isotropic reference medium.
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Anisotropic medium containing nearly aligned cracks.
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The phase velocity and attenuation surfaces of a cracked porous medium of hexagonal symmetry:
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Fracture size = 0.1 cm.
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Fracture size = 100.0 cm.
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5. CONCLUDING REMARKS

• We have seen that rock physics is

– an evolving science that calls for an interdisiplinary perspective.

– an art in the sense that creativity is needed when modelling extremely complex systems.

– an important tool for seismic reservoir characterization.
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