
Unleash The Power Of The Basic Atom ProUnleash The Power Of The Basic Atom ProUnleash The Power Of The Basic Atom ProUnleash The Power Of The Basic Atom ProUnleash The Power Of The Basic Atom Pro

R e v i s i o n 7 . 2 . 0 . 0R e v i s i o n 7 . 2 . 0 . 0R e v i s i o n 7 . 2 . 0 . 0R e v i s i o n 7 . 2 . 0 . 0R e v i s i o n 7 . 2 . 0 . 0

BasicATOMPro
 Syntax Manual
BasicATOMPro
 Syntax Manual

Warranty

Basic Micro warranties its products against defects in material and
workmanship for a period of 90 days. If a defect is discovered, Basic
Micro will at our discretion repair, replace, or refund the purchase price
of the product in question. Contact us at support@basicmicro.com
No returns will be accepted without the proper authorization.

Copyrights and Trademarks

Copyright© 1999-2004 by Basic Micro, Inc. All rights reserved. Basic
Stamp I/II and Parallax are registered trademarks of Parallax Inc. MBasic,
The Atom and Basic Micro are registered trademarks of Basic Micro
Inc. Other trademarks mentioned are registered trademarks of their re-
spective holders.

Disclaimer

Basic Micro cannot be held responsible for any incidental, or
consequential damages resulting from use of products manufactured
or sold by Basic Micro or its distributors. No products from Basic Micro
should be used in any medical devices and/or medical situations. No
product should be used in a life support situation.

Contacts

Web: http://www.basicmicro.com

Discussion List

A web based discussion board is maintained at
http://www.basicmicro.com

Updates

In our continuing effort to provide the best and most innovative
products, software updates are made available in the download
section of the Basic Micro website at http://www.basicmicro.com

5

Table of Contents

T
a

b
le

 o
f C

o
n

te
n

ts
T

a
b

le
 o

f C
o

n
te

n
ts

T
a

b
le

 o
f C

o
n

te
n

ts
T

a
b

le
 o

f C
o

n
te

n
ts

T
a

b
le

 o
f C

o
n

te
n

ts

6

Contents

Introduction ...12
What is the BasicATOM-Pro ? .. 12
This Manual .. 12
On-line Discussion Forums .. 12
Updates ... 12
Technical Support .. 12

The BasicATOM-Pro......................................15
General Theory of Operation .. 16
The ATOM-Pro Language ... 16
How the ATOM-Pro Works ... 16
Hardware ... 17

The Basic’s ...19
Line Labels ... 20
RAM and Program Memory .. 20
Variables .. 21
Arrays .. 22
Tables .. 23
Aliases ... 24
Variable Modifiers ... 25
Pin Variables ... 28
Constants ... 30
Pin constants .. 31

Preprocessor ..33
Preprocessor .. 34
Including files ... 34
Conditional compiling .. 34
#IF constant expression .. 35
#IFDEF name ... 35
#IFNDEF name... 35
#ELSEIF constant expression .. 35
#ELSEIFDEF name ... 36
#ELSEIFNDEF name ... 36
#ELSE.. 36
#ENDIF ... 36

Math ...39
Numerical Types ... 40
Operator Precedence .. 40
Math Functions ... 41
Bitwise Operators ... 42
Comparison Operators... 42
Logical Operators .. 43

Floating Point Format .. 44

Command Modifiers45
Modifier usage .. 46

Syntax ..53
ADIN ... 54
Branch ... 55
Button.. 56
Clear .. 58
Count ... 59
Debug .. 60
Debugin ... 61
Disable .. 62
Do...While .. 63
DTMFout .. 64
DTMFout2 .. 65
Enable ... 66
Enablehserial .. 67
Enablehserial2 (ATOM-Pro Plus only) .. 68
Enablehservo .. 69
End .. 70
Exception ... 71
For...Next ... 72
Freqout .. 73
GetHSERVO.. 74
Gosub...Return ... 75
Goto .. 76
High ... 77
HPWM .. 78
HSERIN .. 79
HSERIN2 (ATOM-Pro Plus only) .. 80
HSEROUT... 81
HSEROUT2 (ATOM-Pro Plus only) ... 82
HSERVO ... 83
I2Cin .. 84
I2Cout.. 85
If...Then...Elseif...Else...Endif ... 86
Input ... 87
Lcdinit .. 88
Lcdread .. 89
Lcdwrite ... 90
LcdWrite Comand Table ... 91
Let ... 92
Lookdown... 93
Lookup ... 94
Low ... 95
Nap ... 96
OnInterrupt .. 97
7

8

Output ... 100
OWIN... 101
OWOUT ... 102
Pause... 103
Pauseclk ... 104
Pauseus ... 105
PEEK...POKE .. 106
Pulsin ... 107
Pulsout ... 108
Push...Pop .. 109
Pwm .. 110
RCtime... 111
Read .. 112
ReadDM ... 113
Repeat...Until ... 114
Resume ... 115
Reverse ... 116
Serdetect ... 117
Serin .. 118
SERIN Modes ... 119
Serout .. 120
SEROUT Modes .. 120
Servo ... 122
Multiple Servo ... 123
SetHserial .. 124
SetHserial2 (ATOM-Pro Plus only) .. 125
Shiftin .. 126
Shiftout .. 127
Sleep ... 128
Sound .. 129
Sound2... 130
Spmotor ... 131
Stop ... 132
Swap ... 133
Toggle .. 134
While...Wend .. 135
Write ... 136
WriteDM .. 137

Reserved Words ...140
Index ..158

9

10

11

In
t
r

o
d

u
c

t
io

n
In

t
r

o
d

u
c

t
io

n
In

t
r

o
d

u
c

t
io

n
In

t
r

o
d

u
c

t
io

n
In

t
r

o
d

u
c

t
io

n

Introduction

12
Introduction
What is the BasicATOM-Pro ?

The BasicATOM-Pro is the next generation of the BasicATOM product
line. It is a self contained microcontroller which is programmed using an
advanced programming language modeled after BASIC, creating a cost
effective and flexible way to program the BasicATOM-Pro hardware.
The BasicATOM-Pro maintains the simplicity of Basic, but offers more
power.

This Manual

This manual in general applies to the BasicATOM-Pro programming syn-
tax. Certain information may only pertain to a given version of the prod-
uct.

This manual documents the BasicATOM-Pro’s programming language in
depth . The main purpose of this manual is to teach the general syntax.

For more information about a particular device refer to its Data Sheet. All
Data Sheets are available from the download section of the Basic Micro
website. Http://www.basicmicro.com

We will continue to update and improve this manual. All updates will
be made available for download from our web site at
http://www.basicmicro.com.

On-line Discussion Forums

We maintain discussion forums at http://www.basicmicro.com in order
to help you to connect with a wide range of related information and
users. The discussion forums are free and will allow you to find infor-
mation and help fast.

Updates

The BasicATOM-Pro software updates are available to new and current
customers from the Basic Micro website download section.

Technical Support

Technical support is provided via the Basic Micro online Support sys-
tem and the discussion forums at www.basicmicro.com. When techni-
cal support is required please fill out a Support Form in the Support
section of our website. In order to assure a proper response please
include a copy of the program you are having problems with, the hard-

ware you are using, BasicATOM-Pro software version number,
prototyping board and so on. By including this information with your e-
mail, you can help us answer your questions much faster. Additional
technical support is often provided by our forum moderators in the discus-
sion boards at our website(http://www.basicmicro.com).
13

14

15

The BasicATOM-Pro

T
h

e
 B

a
s
ic

 A
to

m
T

h
e

 B
a

s
ic

 A
to

m
T

h
e

 B
a

s
ic

 A
to

m
T

h
e

 B
a

s
ic

 A
to

m
T

h
e

 B
a

s
ic

 A
to

m

16
General Theory of Operation

The BasicATOM-Pro(here after refered to as the ATOM-Pro) is a tiny
computer, or better known as a microcontroller. The ATOM-Pro was
designed for use in a wide array of applications. The ATOM-Pro is
built around the Hitachi H8/TINY family, which contains internal
memory (2048 Bytes of RAM and 32K of FLASH program memory).
Each ATOM has a built-in 5-volt regulator, a number of general-
purpose I/O pins (TTL-level, 0-5 volts), commands for math and I/O
pin operations and a serial port for in circuit programming.

The ATOM-Pro Language

The ATOM-Pro language is a simple, easy to learn platform based on
BasicMicro’s MBasic as well as some specialized instructions for the
ATOM hardware.

How the ATOM-Pro Works

The ATOM-Pro’s software brains are not permanently stored in the
CPU. This has many advantages. By not storing the software brains
on the ATOM-Pro, new commands and functionality can easily be
added without the need for new hardware. Once a program is written
the ATOM-Pro’s software will compile what is needed to run correctly.

Since the software brain is not pre loaded, any program even the
smallest will have a minimum size of about 500 bytes out of
32,000bytes regardless of the commands used. This method allows
minimum command / function duplication. If you were to use the
SERIN or SEROUT commands more than once in your program only
minimal code would be added. The ATOM-Pro can use the same
internal code to perform the task of sending or receiving serial data
throughout the program. The same would apply to any other com-
mands used in the program.

Small programs will increase in size rapidly until they reach about
3KB in size. The rate at which a programs size grows will slow as it
grows simply because internal code will be used over again.

Hardware

There are several models of the ATOM-Pro available. For specific
information refer to the data sheets regarding the version you are
using. All data sheets can be downloaded from the downloads
section of the Basic Micro website at http://www.basicmicro.com

The ATOM-pro is programmed at 115Kbps. This means that the
ATOM-Pro interface software will not work on a computer that does
not have serial ports capable of 115Kbps. Most computers that have
been shipped since 1996 have serial ports capable of 115Kbps.

If you are using a laptop or new computer that does not have the
traditional DB-9 serial connector the ATOM-Pro will program from a
USB to serial adapter.

The ATOM-Pro Integrated Development Environment(IDE) software
only works in a Windows environment. There is no DOS support and
no plans for future DOS support.
17

18

19

The Basic’s

T
h

e
 B

a
s
ic

’s

20
Line Labels

In order to access different sections of code you must use line labels.
Unlike the original Basic language, MBasic does not use line numbers.

example:
Loop: goto Loop ;This line repeats infinitely

The above goto statement jumps to a line label LOOP, which is in
front of the GOTO statement. The above line will repeat infinitely. Line
labels can not be duplicated or used as variable names once defined as
a label.

RAM and Program Memory

RAM, or random access memory, is where variable values, and
system values are stored. RAM is also used to store the return
location of GOSUB statements. The ATOM-Pro has about 2000 bytes
of user RAM available.

Program Memory is the memory where your program will reside. The
size of available program memory will limit the size of your program.
The more complicated the program , the more memory you will use.
Most ATOM-Pro modules have 32kbytes of program memory(Some
have 56kbytes of memory).

Variables

Variables are used to store temporary information in the program. They
are created using the VAR keyword. Variables can be BITs, NIBBLEs,
BYTEs, WORDs and LONGs. Before you can use a variable it must be
defined.

example:
Variable name: Variable: Size:
Temp Var Byte

The above states Temp is allocated a byte (8 bits) of ram

Variable names must start with a letter. They can contain letters,
numbers and special characters. However they can not be the same
name as ATOM-Pro reserved words or labels used in a program. The
same variable name can not be defined twice. The ATOM-Pro does
not distinguish between upper and lower case, so the name “TEMP”
is equivalent to “temp”. The maximum character length can be up to
1024 characters.

Throughout this manual and when dealing bits, bytes, words ,longs
and floats will be referred to often. The following is a quick break
down of the values these different variable types can hold:

Type Bit Size Range
Bit 1 1 or 0
Nib 4 0 to 15
Byte 8 0 to 255
SByte 8 -127 to +128
Word 16 0 to 65535
SWord 16 -32767 to +32768
Long 32 0 to 4,294,967,295
SLong 32 -2147483647 to +2147483648
Float 32 +-2^-126 to 2^127

Some examples of defined variables:

DOG Var Bit ;0 or 1
POST Var Nib ;0 to 15
LOG Var Byte ;0 to 255
STICK Var Word ;0 to 65535
TREE Var Long ;0 to 4,294,967,295
21

22
Arrays

As your programs begin to perform more complex tasks, there will be
times when you want a variable to hold many values. An Array is a
structure that can store multiple values of the same type.

example:
Temp var Word(5)

The number 5 in parenthesis shows the variable temp has 5 cells.
Once the array has been defined, each cell can be accessed by its
number:

Temp(0) = 10
Temp(1) = 25
Temp(2) = 45
Temp(3) = 55
Temp(4) = 65

The above will assign the value of 10 to the first cell in the 5 cell
array, 25 to the second cell and so on. Using arrays can simplify your
program as shown below:

Temp Var Byte(5) ;variable temp now has 5 cells
Cntr Var Byte

For Cntr = 0 to 4 ;Set each cell to Cntr + 2
Temp(Cntr) = Cntr + 2

Next

The above code example will load each array, 0 to 4 (5 cells) with the
array number + 2. To do this manually:

Temp(0) = 2
Temp(1) = 3
Temp(2) = 4
Temp(3) = 5
Temp(4) = 6

Tables

Label TableType Data, Data,Data

Label is the name of the table used to call or access the table.
TableType is the size of the table data.

Tables Types:
ByteTable(8bit data)
WordTable(16bit data)
LongTable(32bit data)
FloatTable(floating point data)

Data: the constant value or constant expression to store in the table.

explanation:
Tables are used to store constant data(doesn’t change after program-
ming) which can be accessed like an array variable.

example:
FirstMenu ByteTable “Enter An Option”,0

FirstMenu(0) equals “E”
FirstMenu(1) equals “n”
....

note:
The ending NULL(0) is usefull when using tables with STR

modifiers.
23

24
Aliases

Aliases are alternate names for defined variables. As an example:

DOG Var Byte ;DOG is assigned as an 8 bit variable (Byte)
CAT Var DOG ;CAT now points to the variable DOG

In the above example if DOG were equal to 10, any time the variable
CAT was accessed it would equal 10 since it points to the same
RAM location. Aliases are a good idea when you want to use a
temporary variable with a name that suits its function.

Variable Modifiers

Variable modifiers are used to access only parts of a variable.

In example 1 we show how to alias a variable(point a new variable at
the data of a previously defined variable) using a variable modifier. In
example 1 the “highbyte” modifier is used. This points the aliased
variable, “Cat”, at the high byte(bits 8-15) of “Dog”.

example 1:
Dog Var Word
Cat Var Dog.HighByte

In example 2 we show how to access parts of variables on the fly. In
this example “Cat” is being loaded with a value from “Dog”. Here we
are geting the second byte of the two byte(word) variable, “Dog”, and
storing it in “Cat” by using the “Byte1” modifier.

example 2:
Dog Var Word
Cat Var Byte

Cat = Dog.Byte1
25

26
The table below shows all the different variable modifiers that can
be used:

Modifier Create alias to

LOWBIT bit 0 of variable

BIT0 bit 0 of variable

BIT1 bit 1 of variable

BIT2 bit 2 of variable

BIT3 bit 3 of variable

BIT4 bit 4 of variable

BIT5 bit 5 of variable

BIT6 bit 6 of variable

BIT7 bit 7 of variable

BIT8 bit 8 of variable

BIT9 bit 9 of variable

BIT10 bit 10 of variable

BIT11 bit 11 of variable

BIT12 bit 12 of variable

BIT13 bit 13 of variable

BIT14 bit 14 of variable

BIT15 bit 15 of variable

BIT16 bit 16 of variable

BIT17 bit 17 of variable

BIT18 bit 18 of variable

BIT19 bit 19 of variable

BIT20 bit 20 of variable

BIT21 bit 21 of variable

BIT22 bit 22 of variable

BIT23 bit 23 of variable

BIT24 bit 24 of variable

BIT25 bit 25 of variable

BIT26 bit 26 of variable

BIT27 bit 27 of variable

BIT28 bit 28 of variable

BIT29 bit 29 of variable

BIT30 bit 30 of variable

BIT31 bit 31 of variable

HIGHBIT highest bit of variable

Modifier Create alias to

LOWNIB nibble 0 of variable

NIB0 nibble 0 of variable

NIB1 nibble 1 of variable

NIB2 nibble 2 of variable

NIB3 nibble 3 of variable

NIB4 nibble 4 of variable

NIB5 nibble 5 of variable

NIB6 nibble 6 of variable

NIB7 nibble 7 of variable

HIGHNIB highest nibble of variable

LOWBYTE byte 0 of variable

BYTE0 byte 0 of variable

BYTE1 byte 1 of variable

BYTE2 byte 2 of variable

BYTE3 byte 3 of variable

HIGHBYTE highest byte of variable

LOWWORD word 0 of variable

WORD0 word 0 of variable

WORD1 word 1 of variable

HIGHWORD word 1 of variable

Note: Variable modifiers can also be used in code statements

example:

if myvar.bit0 = 1 then dosomething
27

28
Pin Variables

Pin variables are just like any other variables except that the states of
the individule bits in the variables are the states/directions of the
corresponding pin.

DIRE a 32bit variable accessing the directions of P0-P31.
DIRS a 16bit variable accessing the directions of P0-P15.
DIRES a 16bit variable accessing the directions of P16-P31.
DIRL an 8bit variable accessing the directions of P0-P7.
DIRH an 8bit variable accessing the directions of P8-P15.
DIREL an 8bit variable accessing the directions of P16-P23.
DIREH an 8bit variable accessing the directions of P24-P31.
DIRA a 4bit variable accessing the directions of P0-P3.
DIRB a 4bit variable accessing the directions of P4-P7.
DIRC a 4bit variable accessing the directions of P8-P11.
DIRD a 4bit variable accessing the directions of P12-P15.
DIREA a 4bit variable accessing the directions of P16-P19.
DIREB a 4bit variable accessing the directions of P20-P23.
DIREC a 4bit variable accessing the directions of P24-P27.
DIRED a 4bit variable accessing the directions of P28-P31.
DIR# (# is any number from 0 to 31) is a variable that accesses
the direction of P0 - P31 individually.

INE a 32bit variable accessing the states of P0-P31.
INS a 16bit variable accessing the states of P0-P15.
INES a 16bit variable accessing the states of P16-P31.
INL an 8bit variable accessing the states of P0-P7.
INH an 8bit variable accessing the states of P8-P15.
INEL an 8bit variable accessing the states of P16-P23.
INEH an 8bit variable accessing the states of P24-P31.
INA a 4bit variable accessing the states of P0-P3.
INB a 4bit variable accessing the states of P4-P7.
INC a 4bit variable accessing the states of P8-P11.
IND a 4bit variable accessing the states of P12-P15.
INEA a 4bit variable accessing the states of P16-P19.
INEB a 4bit variable accessing the states of P20-P23.
INEC a 4bit variable accessing the states of P24-P27.
INED a 4bit variable accessing the states of P28-P31.
IN# (# is any number from 0 to 31) is a variable that accesses the
state of P0 - P31 individually.

OUTE a 32bit variable accessing the states of P0-P31.
OUTS a 16bit variable accessing the states of P0-P15.
OUTES a 16bit variable accessing the states of P16-P31.
OUTL an 8bit variable accessing the states of P0-P7.

OUTH an 8bit variable accessing the states of P8-P15.
OUTEL an 8bit variable accessing the states of P16-P23.
OUTEH an 8bit variable accessing the states of P24-P31.
OUTA a 4bit variable accessing the states of P0-P3.
OUTB a 4bit variable accessing the states of P4-P7.
OUTC a 4bit variable accessing the states of P8-P11.
OUTD a 4bit variable accessing the states of P12-P15.
OUTEA a 4bit variable accessing the states of P16-P19.
OUTEB a 4bit variable accessing the states of P20-P23.
OUTEC a 4bit variable accessing the states of P24-P27.
OUTED a 4bit variable accessing the states of P28-P31.
OUT# (# is any number from 0 to 31) is a variable that accesses
the state of P0 - P31 individually.

IN and OUT pin variables are interchangable. Either one can be used
to read or write a pin state. The two different names are provided to
make code more easy understood.
29

30
Constants

Constants are similar to variables except their values are set at com-
pile time and can not be changed. When creating a program it can be
beneficial to use constants for certain values that don’t change.

example:
Meter CON 1 ;Meter = 1
Centimeter CON Meter * 100 ;Centimeter = 100
Millimeter CON Centimeter * 10 ;Millimeter = 1000

In the above example “centimeter” and “millimeter” values were de-
rived from the constant “meter”. There are a 100 centimeters in a meter
and a 1000 millimeters in a meter.

Pin names are also constants so they can be used in the following
way:

RedLed Con P0
GreenLed Con P1

Main
High RedLed
High GreenLed

Goto Main

RedLed and GreenLed are now constants that point to pin 0 and pin 1.
When writing complex programs it may be beneficial to use constants
as shown above.

Pin constants

Pin constants are simple predefined constants for the different pin
numbers on the ATOM-Pro. All ATOM-Pro modules/boards have 16
common I/O pin names. See specific ATOM-Pro module datasheets
for each modules extended list of pin names.

P0 = 0
P1 = 1
P2 = 2
P3 = 3
P4 = 4
P5 = 5
P6 = 6
P7 = 7
P8 = 8
P9 = 9
P10 = 10
P11 = 11
P12 = 12
P13 = 13
P14 = 14
P15 = 15

Also each ATOM-Pro module has two specialized pins(S_IN and
S_OUT) for programming and for use as serial input/output.
31

32

33

Preprocessor

P
r

e
p

r
o

c
e

s
s
o

r
P

r
e

p
r

o
c

e
s
s
o

r
P

r
e

p
r

o
c

e
s
s
o

r
P

r
e

p
r

o
c

e
s
s
o

r
P

r
e

p
r

o
c

e
s
s
o

r

34

Preprocessor

The ATOM-Pro compiler’s preprocessor commands are used to include
external files and to conditional compie sections of code.

Including files

By using the #include preprocessor directive the user can modularize
their program. The #include directive acts like a compile time paste.
The text in the file specified in the #include directive will be placed
into the users program at the location of the directive at compile time.

For example, if you have a basic file called “myfuncs.bas” you can
add the code from this file to your compiled program by using the
#include directive like this:

main
gosub myfunc1 ;myfunc1 is defined in myfuncs.bas
goto main

#include “myfuncs.bas”

This assumes that the myfuncs.bas file is in the same directory as the
main program. If the included file is not in the same directory you
must include the full or partial path name.

For example, if “myfuncs.bas” is in a sub directory of the directory the
main program is in you can:

#include “mysubdir\myfuncs.bas”

Or you can specify the full path:

#include “c:\mybasprogs\mysubdir\myfuncs.bas”

Conditional compiling

Conditional compiling is used when you don’t always want some
sections of your code to be compiled into the program. Using the
conditional directives you can specify whether certain lines of code
are compiled into your program or not based on whether something
was previously defined.

35

#IF constant expression

The #IF directive is used to specify user code that will only be
compiled in the program if the constant expression is true(ie non
zero).

Example:
#IF mycon = 120

...code...
#ENDIF

#IFDEF name

The #IFDEF directive is a special case of the #IF directive. Its
argument must be a name(ie label,variable or constant name). If the
name was defined previously in the program the code inside the
directive will be compiled.

Example:
mycon con 10
#IFDEF mycon

...code...
#ENDIF

#IFNDEF name

The #IFNDEF directive is a special case of the #IF directive. Its
argument must be a name(ie label,variable or constant name). If the
name was not defined previously in the program the code inside the
directive will be compiled.

Example:
#IFNDEF mycon

...code...
#ENDIF

#ELSEIF constant expression

The #ELSEIF directive is used to allow multiple conditions easily

Example:
#IF mycon = 120

...code...
#ELSEIF mycon = 130

..code..
#ELSEIF mycon = 140

..code..
#ENDIF

36

#ELSEIFDEF name

The #ELSEIFDEF directive is used to allow multiple conditions easily

Example:
#IFDEF mycon1

...code...
#ELSEIFDEF mycon2

..code..
#ELSEIFDEF mycon3

..code..
#ENDIF

#ELSEIFNDEF name

The #ELSEIFNDEF directive is used to allow multiple conditions
easily

Example:
#IFNDEF mycon1

...code...
#ELSEIFNDEF mycon2

..code..
#ELSEIFNDEF mycon3

..code..
#ENDIF

#ELSE

The #ELSE directive can be used with any #IF directive. When the
#IF directive is false the code inside the #ELSE directive will be
added to the compiled program instead.

Example:
#IF mycon = 10

...code...
#ELSE

..code..
#ENDIF

#ENDIF

All conditional compiling directives must end with an #ENDIF.

37

38

39

Math

M
a

t
h

M
a

t
h

M
a

t
h

M
a

t
h

M
a

t
h

40
Numerical Types

Numbers can be written in different ways. Binary numbers are written
using only 0 and 1. Hexadecimal uses characters ‘0’ to ‘F’. Binary and
hexadecimal numbers must have an indicator.

1234 or d’1234’ : Standard Decimal number
$1F2A or 0x1F2A : Hexadecimal notation
%1001 : Binary notation

The character $(string) or “0x” indicates Hexadecimal and the percent-
age sign % indicates binary data. These special characters must be
used in order to let the Atom know what numerical types they are.

Operator Precedence

The ATOM-Pro uses standard algebraic syntax. In the ATOM-Pro 2+2*5/
10 = 3. This is because in the ATOM-Pro each math operator has a
precedence. The multiply and divide operators have equal precedence.
In the above calculation 2*5 will be calculated first (equaling 10), then
the divide by 10 (equals 1), then the addition of 2 (equaling 3). You can
use parenthesis to force specific orders (i.e.: ((2+2)*2) /2 would calcu-
late the value the way the Basic Stamp does(ie left to right with no
precedence).

Order: Operation:
1st NOT, ABS, SIN, COS, - (NEG), DCD, NCD, SQR, RANDOM,

 TOINT, TOFLOAT, BIN2BCD, BCD2BIN, ~(Binary NOT),
!(Binary NOT), NOT(Logical NOT), FSQRT, FSIN, FCOS,
FTAN, FASIN, FACOS, FATAN, FSINH, FCOSH, FTANH,
FATANH, FLN, FEXP

2nd Rev, Dig
3rd MAX, MIN
4th *, **, */, /, //
5th +, -
6th <<, >>
7nd <, <=, =, >=, >, <>
8th &, |, ^, &/, |/, ^/
9rd And, Or, Xor

Math Functions

The following is a list of math functions the ATOM-Pro can perform.

UNARY Commands
-(NEG) expression Negate value
ABS expression Absolute value
SIN expression sine of value(0-255)
COS expression cosine of value(0-255)
DCD expression 2 to the nth power(n = value)
NCD expression smallest power of 2 that is GREATER

than value.
SQR expression square root of value.
BIN2BCD expression Integer to Packed BCD format
BCD2BIN expression Packed BCD to integer.
RANDOM expression Generate Rangom value with seed

expression
NOT expression Logical inverse

Floating Point UNARY Commands
TOINT expression Converts a Floating Point value to an

Integer value.
TOFLOAT expression Converts an Integer value to a Float

ing Point value.
FSQRT expression Square Root
FSIN expression Sin(range: PI/2 to -PI/2)
FCOS expression Cos(range: PI/2 to -PI/2)
FTAN expression Tan(range: PI/2 to -PI/2)
FASIN expression ArcSin(range: 1 to -1)
FACOS expression ArcCos(range: all values)
FATAN expression ArcTan(range: 1 to -1)
FSINH expression Hyperbolic Sin(range: 1.13 to -1.13)
FCOSH expression Hyperbolic Cos(range: 1.13 to -1.13)
FTANH expression Hyperbolic Tan(range: 1.13 to -1.13)
FATANH expression Hyperbolic ArcTan

(range: 1.13 to -1.13)
FLN expression Natural Log(range: 9.58 to 0.1)
FEXP expression Exponent(range: 1.13 to -1.13)
41

42
= Equal

<> Not Equal

Compare Op. Description

BINARY Commands
exp1 + exp2 Add exp1 to exp2
exp1 - exp2 Sub exp2 from exp1
exp1 * exp2 Mulitply exp1 by exp2
exp1 ** exp2 Get high 32bits of a multiply
exp1 */ exp2 Fractional Multiply
exp1 / exp2 Divide exp1 by exp2
exp1 // exp2 Mod exp1 by exp2
exp1 MAX exp2 smaller of the two expressions.
exp1 MIN exp2 larger of the two expressions.
exp1 DIG exp2 digit of exp1 at exp2 position.
exp1 REV exp2 reverses exp2 bits of exp1 starting

with LSB

Bitwise Operators

Bitwise operators are commands that directly effect the bits of a
value.

Bitwise operators
exp1 & exp2 And exp1 with exp2
exp1 | exp2 Or exp1 with exp2
exp1 ^ exp2 XOr exp1 with exp2
exp1 >> exp2 Shift exp1 right by exp2
exp1 << exp2 Shift exp1 left by exp2
~(NOT) expression Invert exp1
!(NOT) Invert exp1

Comparison Operators

Comparison operators are used when comparing two or more values.
Examples are the IF...THEN and LOOKDOWN commands.
< LessThan

> GreaterThan

<= LessThan Equal

>= GreaterThan or Equal

Logical Operators

Logical operators are slightly different in use than comparison opera-
tors. When an IF...THEN statement contains more than one compari-
son you must combine them using a logical operator. The example
below illustrates this:

If (Variable < 100) AND (Variable > 10) Then Label

As you can see from the example if BOTH are true then the program
jumps to the label.

Logical Op. Description

AND Logical AND

OR Logical OR

XOR Logical Exclusive OR

NOT Logical NOT
43

44
Floating Point Format

The floating point math the ATOM-Pro uses differs some what from
the normal IEEE 754 floating point standard.

IEEE format:
Bit 31 = Sign bit(S)
Bit 30-23 = Exponent(E)
Bit 22-0 = Mantissa(M)

ATOM-Pro format
Bit 31-24 = Exponent(E)
Bit 23 = Sign bit(S)
Bit 22-0 = Mantissa(M)

32.31.30.29.28.27.26.25.24.23.22.21.20...0
IEEE S E E E E E E E E M M M M...M
ATOM E E E E E E E E S M M M M...M

Note: All variables that will contain a floating point number must be a
FLOAT type variable.

45

Command Modifiers

C
o

m
m

a
n

d
 M

o
d

ifie
r

s
C

o
m

m
a

n
d

 M
o

d
ifie

r
s

C
o

m
m

a
n

d
 M

o
d

ifie
r

s
C

o
m

m
a

n
d

 M
o

d
ifie

r
s

C
o

m
m

a
n

d
 M

o
d

ifie
r

s

46
Modifier usage

Command modifiers can be used to modify/enhance data in a com-
mand directly. Modifiers can be used with any commands that show
{Modifier or Mods} in their syntax.

I/O Modifiers
dec Decimal Value
hex Hexadecimal Value
bin Binary Value
str Input or Output Array Variables

Signed I/O Modifiers
sdec Decimal Value
shex Hexadecimal Value
sbin Binary Value

Indicated I/O Modifiers
ihex Hexadecimal Value
ibin Binary Value

Combination I/O Modifiers
ishex Hexadecimal Value
isbin Binary Value

Output Only Modifiers
rep Output character n times
real Output Floating point numbers

Input Only Modifiers
waitstr Waits until values received match array
wait Waits util values received match string of values
skip Skip n values

HEX - DEC - BIN
desc(input):

Convert input ASCII characters to binary. Input must be in
HEX,DEC or BIN format

desc(output):
Convert a binary value to ASCII characters in HEX,DEC or BIN

format

syntax:
modifier{#1} arg{\#2}
#1: optional number that sets a maximum number of digits to pass
#2: optional value that sets a minimum number of digits to pass

example:
command args,[dec2 1234\2] ;output “34”

SDEC - SHEX - SBIN
desc(input):

Convert input ASCII characters to binary. Input must be in
HEX,DEC or BIN format. “-” is a valid sign character.

desc(output):
Convert a binary value to ASCII characters in HEX,DEC or BIN

format with sign(“-”) if negative

syntax:
modifier{#1} arg{\#2}
#1: optional number that sets a maximum number of digits to pass
#2: optional value that sets a minimum number of digits to pass

example:
command args,[sdec -1234] ;output “-1234”
47

48
IHEX - IBIN
desc(input):

Convert input ASCII characters to binary. Input must be in
HEX,DEC or BIN format. Input characters are ignored until a valid
indicator character is received

desc(output):
Convert a binary value to ASCII characters in HEX,DEC or BIN

format. An indicator character is passed first.

indicator chars:
HEX: “$”
BIN: “%”

syntax:
modifier{#1} arg{\#2}
#1: optional number that sets a maximum number of digits to pass
#2: optional value that sets a minimum number of digits to pass

example:
command args,[ihex $ABCD] ;output “$ABCD”

ISHEX - ISBIN
desc(input):

Convert input ASCII characters to binary. Input must be in
HEX,DEC or BIN format with optional sign character(“-”). Input charac-
ters are ignored until a valid indicator character is received

desc(output):
Convert a binary value to ASCII characters in HEX,DEC or BIN

format. An indicator character is passed first. If the value is negative
a sign character is pased next(“-”).

indicator chars:
HEX: “$”
BIN: “%”

syntax:
modifier{#1} arg{\#2}
#1: optional number that sets a maximum number of digits to pass
#2: optional value that sets a minimum number of digits to pass

example:
command args,[ihex -$ABCD] ;output “$-ABCD”

REAL
desc(output only):

Convert a Floatingpoint value to ASCII characters. Sign and
decimal point are handled.

syntax:
modifier{#1} arg{\#2}
#1: optional number that sets the maximum digits to pass before

the decimal point.(Default: 10)
#2: optional value that sets the maximum digits to display after

the decimal point.(Default: 10)

example:
command args,[real 1.1234] ;output “1.1234000000”

REP
desc(output only):

Repeat a character n times

syntax:
modifier arg\n

example:
command args,[rep “a”\20] ;output the letter “a” 20 times

STR
desc(input):

Receive a variable number of values and store in a variable array

desc(output):
Output the elements of a variable length array.

syntax:
str value{\length{\eol}}
\length: optional value that sets the maximum number of values

to pass
\eol: optional value that sets the end of line(EOL) character to

stop passing data on. \length is required when using \eol

example:
command args,[str myarray\10\”c”] ;output upto 10

;values in myarray.
;Stop passing values
;on “c”.
49

50
WAITSTR
desc(input only):

Receive value until a continous group matches string

syntax:
waitstr sting\length{\eol}
\length: optional value that sets the maximum number of values

to match
\eol: optional value that sets the end of line(EOL) character to

stop matching data on. \length is required when using \eol

example:
command args,[waitstr string\10\”c”]

WAIT
desc(input only):

Receive value until a continuous group matches constant string

syntax:
wait(“my constant string”)

example:
command args,[wait(“My string”)]

SKIP
desc(input only):

Skip specified number of values

syntax:
skip count

example:
command args,[skip 10]

51

52

53

Syntax

S
y

n
t
a

x
S

y
n

t
a

x
S

y
n

t
a

x
S

y
n

t
a

x
S

y
n

t
a

x

54

ADIN

ADIN pin,variable
Convert Analog signal on pin and store value in variable.

Pin: a constant or variable that specifies the pin number. The
specified pin number must be cabable of A/D conversion.

Variable: a word or long size variable

Explanation

The ADIN command is used to convert an analog voltage(0-5v) into a
number from 0 to 1023. The value is stored in variable.

55

Branch

BRANCH index, [Label1,...LabelN]
Go to the Label specified by index.

Index is an expression that points to the label to jump to in the
list of labels in the Branch command.

Label1,...LabelN a list of labels.

Explanation

The Branch command allows the program to jump to different loca-
tions based on a variable index. BRANCH is used to simplify code
like this:

IF temp = 0 THEN dog ;temp =0; go to label dog
IF temp = 1 THEN cat ;temp =1: go to label cat
IF temp = 2 THEN mouse ;temp =2: go to label mouse

into code like this:

BRANCH temp, [dog, cat, mouse]

If the index is greater than the number of Labels in the list then the
command exits and program execution continues on the next line.

56
Button

BUTTON pin, pressedstate, repeatdelay, repeatrate, workbyte, logicstate,
label

Reads the pin, debounces the button input, performs an auto-repeat if
activated, and branches to a label if logical state is active. The Button
may be activated in either a low state or a high state based on the
logicalstate.

Pin is an expression of the pin number the button/switch is
connected to. The pin will be made an input.

PressedState is an expression(0 or 1) which specifies the
voltage when the button is pressed(Gnd or Vdd).

RepeatDelay is an expression(0–255) which sets the functions of
the button command. If equal to 0 debounce and auto-repeat are
disabled. If equal to 255, BUTTON executes a debounce(one
loop), but auto-repeat is disabled. All other values(1-254)
are the number of program loops the button command must
execute before autorepeat begins.

RepeatRate is an expression(0–255) of the number of program
loops BUTTON executes before each repeat

WorkByte is a work space variable used internally by the
BUTTON command to store current loop counts for use when
debouncing, delaying, and auto-repeating. This variable must be
unique inside the program loop BUTTON is running in.

Logicalstate is an expression(0 or 1) which determines the
logical state the button must be in for a branch to occure(pressed
or not pressed).

Label is the label of the location in the user program to jump/
branch to when the targetstate is triggered.

Explanation

The BUTTON command works much like a key on a PC keyboard.
When a switch/button is closed or opened(depending on command
arguments), the BUTTON command will jump/branch to the specified
label. The BUTTON command also allows the user to specify the
delay before auto-repeating and how fast to auto-repeat(if at all).

DEBOUNCE
When a switch or button contact is closed the mechanical connec-
tions may bounce. This can cause a period where the state of the
switch or button can not acurately be determined. Debouncing the
input rereads the input state one program loop after the first read of
the pin the switch/button is connected to inorder to confirm the state
of the input.
57

58

Clear

CLEAR
Clear user RAM.

Explanation

The Clear command will clear (Set to 0’s) all of the user ram. User ram
is set aside space for all the variables a user program will use.

59

Count

COUNT pin, period, variable

Count the number of cycles (0-1-0 or 1-0-1) on the specified pin during
period number of milliseconds and store that number in variable.

Pin is an expression of the I/O pin number to use.
This pin will be placed into input mode.

Period is an expression(1 to 4294967296) of the time in millisec
onds during which to count.

Variable is a variable where the count will be stored.

Explanation

COUNT checks the state of PIN in a tight loop and will count the low to
high transitions. COUNT is ideal for figuring out frequency of certain
waves or timings based on an incoming signal.

60

Debug

DEBUG [{Options} item, {{Options} item}]
Sends values of specified variables or constants to the debug watch
window.

Options are DEC, HEX, BIN or REAL. These modifiers will
convert Item to DEC = Decimal, HEX = Hexadecimal, BIN =
Binary digits or REAL = Value.

Item can be a constant or variable. There is no limit to the amount
of items used other than program memory.

Explanation

The DEBUG command will send any values stored in a given variable
or constant to the debug watch window. The DEBUG command is
also linked with the IDE’s In Circuit Debugger (Refer to the In Circuit
Debugger section of the BasicMicro IDE users guide). Variables used
by themselves are automatically truncated to character size.

61

Debugin

DEBUGIN [(Options) item]
Receives byte values from the IDE DEBUG window and stores them
in a specified variable on the Atom.

Options are DEC, HEX, BIN or REAL. These modifiers will
convert Item to DEC = Decimal, HEX = Hexadecimal, BIN =
Binary digits or REAL = Value.

Item can only be a byte variable. It stores the received byte value
in the specified variable.

Explanation

The DEBUGIN command allows you to send data to your program on-
the-fly from the IDE DEBUG Watch Window and stores the data in the
specified variable. This can be useful for adjusting a program on the
fly.

62

Disable

DISABLE {intname}
Disable the specified interrupt. If no interrupt is specified disable all
interrupts.

IntName is the name of the interrupt to disable. See the
ONINTERRUPT directive for a list of interrupt names.

Explanation

DISABLE turns off the spcified interrupt by clearing its interrupt enable
bit. Any other register settings remain the same. If no interrupt is
specified the global interrupt enable bit is cleared.

63

Do...While

Do
....user code....
While expression

Repeat a group of commands while expression is true

Expression is any combination of variables, constants,
mathmatical and/or logic operators

Explanation

Execute a group of commands while some expression is true.
DO...WHILE will run at least once. A True value is any value other than
zero(0).

64

DTMFout

DTMFOUT pin,{playtime,pausetime,}[,key...]
Generate dual-tone, multifrequency tones for DTMF devices. The
tones a touch tone telephone make are examples of DTMF tones.

Pin is an experssion of the I/O pin number to use. This
pin will be set to an output during tone generation. After tone
generation is complete, the pin is left as an input.

Playtime is an optional expression(0 to 65535) of the time to play
the tone in milliseconds. If playtime is not used DTMFout defaults
to 200 ms on.

Pausetime is an optionalexpression(0 to 65535) of the length of
silence after each tone. If pausetime is not used DTMFout de
faults to 50 ms. If playtime is used then pausetime is required.

Key is a variable or constant specifying the DTMF key to send.

Key # Telephone Key
0 to 9 Digits 0 - 9
10 Digit *
11 Digit #
12—15 Fourth column tones A through D

Explanation

DTMF tones are a simple form of analog/digital conversion used to
communicate digital commands via an analog signal. These signals
are ussually used to dial a telephone. For all intents the DTMFOUT
command acts as a telephone keypad. DTMF tones are generated
using pulse width modulation to digitally create the equivilent of two
sine wave waveforms at different frequencies. Due to the PWM
generation of the tones high-frequency noise will be present on the
output. This noise must be filtered with a lowpass filter circuit.

65

DTMFout2

DTMFOUT2 pin1 \ pin2,{playtime,pausetime,}[,key...]
Uses two pins to generate dual-tone, producing a cleaner signal (i.e.,
telephone "touch" tones).

Pin1 / Pin2 are expressions for the I/O pins to use. These pins
will be set as outputs during tone generation. After tone genera
tion is complete, the pins are set to inputs.

Playtime is an optional expression(0 to 65535) of the time to play
the tone in milliseconds. If playtime is not used DTMFout defaults
to 200 ms on.

Pausetime is an optionalexpression(0 to 65535) of the length of
silence after each tone. If pausetime is not used DTMFout de
faults to 50 ms. If playtime is used then pausetime is required.

Key is a variable or constant specifying the DTMF key to send.

Tone # Telephone Key
0 to 9 Digits 0 - 9
10 Digit *
11 Digit #
12—15 Fourth column tones A through D

Explanation

The DTMFOUT2 command follows the same basic format as
DTMFOUT (refer to DTMFOUT), except it generates the multifre-
quency tones on two pins. These two pins can be tied together using
a 390 ohms resistor. The tones generated by DTMFOUT2 are made
of square wave frequencies. This produces clearer and louder tones
but some DTMF decoders may have trouble with it

66

Enable

EnABLE {intname}
Enable the specified interrupt. If no interrupt is specified enable all
interrupts.

IntName is the name of the interrupt to disable. See the
ONINTERRUPT directive for a list of interrupt names.

Explanation

ENABLE turns on the spcified interrupt by setting its interrupt enable
bit. Any other register settings remain the same. If no interrupt is
specified the global interrupt enable bit is set

67

Enablehserial

ENABLEHSERIAL
Enable the hardware serial system(SCI3)

Explanation

ENABLEHSERIAL is a compile time directive that tells the compiler to
add support for the hardware serial system(SCI3)

68

Enablehserial2 (ATOM-Pro Plus only)

ENABLEHSERIAL2
Enable the hardware serial system(SCI3_2)

Explanation

ENABLEHSERIAL2 is a compile time directive that tells the compiler
to add support for the hardware serial system(SCI3_2). This directive
is only supported by the ATOM-Pro Plus processors.

69

Enablehservo

ENABLEHSERVO pinmask,minpulse,maxpulse,resfresh
Enable the hardware servo control system

Pinmask is a constant that specifies a mask for which I/O pins
will be taken over by the HSERVO system.

Minpulse is a constant of the minimum pulse width in useconds of
the servo control pulses

Maxpulse is a constant of the maximum pulse width in useconds
of the servo control pulses

Refresh is a constant of the refresh rate in milliseconds.

Explanation

ENABLEHSERVO is a compile time directive that tells the compiler
to add support for the hardware servo control system. The HSERVO
system uses the TimerW(or TimerZ0 in ATOM-Pro Plus) to produce
interrupt driven signals for up to 32 servos. The pinmask is a 32bit
binary number where each bit specifies whether that particular pin is
handled by the hardware servo system or by user code. A bit set as
logical 1 enables that pin for the hardware servo system.

Example:
ENABLEHSERVO %11110000,200,2200,20

In the example pins P4-P7 are handled by the hardware servo sys-
tem. The minimum pulse width is 200us and the maximum pulse
width is 2200us giving a total swing of 2000us on the servo. The
refresh rate of the servos is every 20ms.

70

End

END
Ends the program.

Explanation

END will stop the program until reset. All I/O lines will remain at their
last know state.

71

Exception

EXCEPTION label

Clears the return stack and jumps to label.

Label is any root lable. A root label is any label not defined in a
gosub routine.

Explanation

Exception’s puprose is to jump out of nested subroutines(ie
GOSUBs). Using a goto to jump out of a GOSUB will leave a return
value on the stack and eventually may cause the stack to overflow.
EXCEPTION works just like a GOTO except it clears any return
values from the stack.

72

For...Next

FOR variable = startVal to endVal {STEP stepVal} ... NEXT

Create a repeating loop that executes the program lines between
FOR and NEXT, increment or decrement the variable according to
stepVal, until the value of the variable passes the endVal.

Variable is where to store the current count.

StartVal is an expression of the initial value of the variable.

EndVal is an expression of the end value of the variable. When
the value of the variable passes endVal execution stops and the
program goes to the instruction after Next.

StepVal is an optional expressionof the amount variable
increases or decreases with each trip through the FOR/
NEXT loop. Negative values for StepVal will decrement and
Positive values will increment.

For counter = 20 to 1 step -1 ; this will decrement -1

For counter = 1 to 20 step 1 ; this will increment +1

Explanation

The FOR...NEXT loop will allow your program to execute a series of
instructions for a specific number of repetitions. By default, the
counter variable is incremented by 1 each time through the loop. It
will continue to loop until the result of the counter is outside of the
range set by StartValue and EndValue.

Note: The variable type must match the Start,End and Step value
types. If Floating Point numbers are used for Start,End and Step,
variable MUST be a FLOAT type variable.

73

Freqout

FREQOUT pin, duration, freq1{,freq2}
Generates one or two tones for a specified duration.

Pin is an expression of the I/O pin number to use. This
pin will be put into output mode during generation of tones and
left in that state after the instruction is completed.

Duration is an expression of the length in milliseconds of the
tone(s).

Freq1 is an expression of the frequency(Hz, 0 to 32767) in hertz
of the first tone.

Freq2 is an expression of the frequency(0 to 32767 Hz) in hertz
of the optional second tone

Explanation

FREQOUT generates one or two sine waves using a pulse-width
modulation algorithm. The FREQOUT command can be used to play
tones through a speaker or audio amplifier. FREQOUT can also be
used to play simple songs. A filtering circuit is required with most
speakers.

74

GetHSERVO

GETHSERVO pin,position{,idle}
Get the current position of the specified servo. Optionally get
whether the servo is idle or not.

Pin is an expression of the I/O pin number to check servo
position on.

Position is a variable where GETHSERVO will store the current
position of the specified servo

Idle is an optional variable where GETHSERVO will store the
current state of the servo. A value of $FFFFFFFF(ie Non-Zero)
means the servo is idle(at it’s final position)

Explanation

Gethservo is used to determine what position a servo is at and
whether it has finished moving to it’s final position.

75

Gosub...Return

GOSUB Label
Store the address after GOSUB, then go to the point in the program
specified by Label.

Label specifies the section of the program to jump to.

Explanation

GOSUB is a close relative of the GOTO command. The GOSUB
command tells the program to go execute code at the beginning of
the specified label. Unlike GOTO, GOSUB stores the location of the
next line of code immediately following itself, when the program
encounters a RETURN instruction in the subroutine, it then tells the
program to return to the stored location.

When GOSUBs are used, a RETURN statement is necessary (at the
end of the subroutine) to take the program back to the instruction
after the most recent GOSUB.

Important Notes

Each GOSUB call uses 4 bytes of ram from the STACK to store the
return address.

76

Goto

GOTO Label
Go to the point in the program specified by Label.

Label specifies the section of the program to jump to.

Explanation

The GOTO command makes a program jump to a specific label and
execute the code that starts at that location. BASIC programs are
read from left to right / top to bottom, just like in the English lan-
guage. The GOTO command forces the program to jump to another
section of code.

77

High

HIGH pin
Makes the specified pin an output and sets it to high
(+5 volts is High)

Pin is an expression of the I/O pin number to use.

Explanation

The HIGH command is used to set the designated pin to an output
and to +5 volts. This allows your program to easily turn on an LED or
other such devices.

78

HPWM

HPWM pin,period,duty
Output a pulse width modulated signal at the specified period and
duty cycle

Pin is an expression of the I/O pin number to use.
This pin will be placed into output mode during pulse generation
then switched to input mode when the instruction finishes. Only
pins with the FTIOB/C or D option can use the HPWM command.

Period is an expression of the period of the pulse width signal in
us.

Duty is an expression of the duty cyle of the pulse width signal in
microseconds(us).

Explanation

The HPWM command outputs a user specified Pulse signal. The
period is the time in us of one pulse cycle. The duty is the time in us
that the pulse signal is high.

79

HSERIN

HSERIN {timeout,tlabel,}[{mods} Var...VarN]
Read data from the hardware serial port

Timeout is an expression of the time in millisecons to wait for
data to be recieved.

TLabel a label to jump to when HSERIN times out.

Mods are command modifiers which can be used to modify the
variable directly.

Var...VARN is a variable or list of variables(comma delimited)
where data will be stored.

Explanation

The HSERIN command is part of the hardware serial port system. In
order for it to work properly an ENABLEHSERIAL compiler directive
must be in the program and a SETHSERIAL command must setup the
hardware serial port. HSERIN works almost identically to the SERIN
command except it must use the hardware serial input pin(RXD) and
the baudrate is set by the SETHSERIAL command.

80

HSERIN2 (ATOM-Pro Plus only)

HSERIN2 {timeout,tlabel,}[{mods} Var...VarN]
Read data from the hardware serial port

Timeout is an expression of the time in millisecons to wait for
data to be recieved.

TLabel a label to jump to when HSERIN times out.

Mods are command modifiers which can be used to modify the
variable directly.

Var...VARN is a variable or list of variables(comma delimited)
where data will be stored.

Explanation

The HSERIN2 command is part of the hardware serial port system(
BasicATOM-Pro Plus only). In order for it to work properly an
ENABLEHSERIAL2 compiler directive must be in the program and a
SETHSERIAL2 command must setup the hardware serial port.
HSERIN2 works almost identically to the SERIN command except it
must use the hardware serial input pin(RXD_2) and the baudrate is
set by the SETHSERIAL2 command.

81

HSEROUT

HSEROUT [{mods} Exp...ExpN]
Read data from the hardware serial port

Mods are command modifiers which can be used to modify the
variable directly.

Exp...ExpN is an expression or list of expressions(comma
delimited) of data that will be sent.

Explanation

The HSEROUT command is part of the hardware serial port system(
BasicATOM-Pro Plus only). In order for it to work properly an
ENABLEHSERIAL directive must be in the program and a
SETHSERIAL command must setup the hardware serial port.
HSEROUT works almost identically to the SEROUT command except
it must use the hardware serial output pin(TXD) and the baudrate is
set by the SETHSERIAL command.

82

HSEROUT2 (ATOM-Pro Plus only)

HSEROUT2 [{mods} Exp...ExpN]
Read data from the hardware serial port

Mods are command modifiers which can be used to modify the
variable directly.

Exp...ExpN is an expression or list of expressions(comma
delimited) of data that will be sent.

Explanation

The HSEROUT2 command is part of the hardware serial port system(
BasicATOM-Pro Plus only). In order for it to work properly an
ENABLEHSERIAL2 directive must be in the program and a
SETHSERIAL2 command must setup the hardware serial port.
HSEROUT2 works almost identically to the SEROUT command
except it must use the hardware serial output pin(TXD_2) and the
baudrate is set by the SETHSERIAL2 command.

83

HSERVO

HSERVO [Pin\Pos\Spd....PinN\PosN\SpdN]
Read data from the hardware serial port

Pin...PinN are expressions of the pin numbers of the servos
whose position and speed are to be set.

Pos...PosN are expressions of the positions to set the specified
servos to.

Spd...SpdN are optional expressions of the speed to move each
servo to its new position(defaults to 255 if not used).

Explanation

The HSERVO command is a back ground timer interrupt driven
command. It allows you to set the position and speed to move to
that new position of upto 32 servos at one time. Each severo set will
start moving to its new position imediately after the HSERVO
comand finishes. HSERVO requires an ENABLEHSERVO directive in
your program.

Note: The hardware servo command can affect timing critical com-
mands such as pause and serial commands(not HSERIAL com-
mands). See the ENABLEHSERVO directive for details on calculat-
ing processor usage.

84

I2Cin

I2CIN DataPin, ClockPin,{ErrLabel,}Control,{Address,}
[{mods}Var,...VarN]
Receives data from an I2C device (EEPROM, External A/D Con-
verter)

DataPin is an expression of the I/O pin number to use for
data(SDA).

ClockPin is an expression of the pin number that the
BasicATOM will use to clock the bus signal. (SCL)

ErrLabel is a label that the program will jump to if the I2CIN com-
mand fails (i.e.: device is not connected).

Control is an expression of the I2C device’s control byte. The
control byte consist of two parts. The first four bitsare the device
type (EEPROMs use %1010). The next three bits are the device
ID. If the address lines of the serial EEPROM (i.e. : A0,A1, A2)
are grounded then the next three bits of the control byte must be
zero.(ie: %1010000X). The last bit is a flag used by the
ATOM-Pro to determine the addressing format, 1 =16bit ad
dressing, 0 = 8bit addressing for I2C communications.

Address is an optional expression of the starting address for
reading from the device.

Mods are command modifiers which can be used to modify the
variable data directly after being recieved.

Var is a variable where data being recieved from the device will
be stored

VarN is a list of variables where the data being recieved from the
device will be stored

Explanation

The I2CIN command allows your program to receive data from an I2C
device.

85

I2Cout

I2COUT DataPin, ClockPin,{ErrLabel,}Control,{Address,} [{mods}
Exp,...ExpN]
Sends data to an I2C device (EEPROM, External A/D Converter)

DataPin is an expression of the I/O pin number to use for
data(SDA).

ClockPin is an expression of the pin number that the
BasicATOM will use to clock the bus signal. (SCL)

ErrLabel is a label that the program will jump to if the I2CIN com-
mand fails (i.e.: device is not connected).

Control is an expression of the I2C device’s control byte. The
control byte consist of two parts. The first four bitsare the device
type (EEPROMs use %1010). The next three bits are the device
ID. If the address lines of the serial EEPROM (i.e. : A0,A1, A2)
are grounded then the next three bits of the control byte must be
zero.(ie: %1010000X). The last bit is a flag used by the
ATOM-Pro to determine the addressing format, 1 =16bit
addressing, 0 = 8bit addressing for I2C communications.

Address is an optional expression of the starting address for
writing to the device.

Mods are command modifiers which can be used to modify the
variable data directly before being sent.

Exp is an expression of the data being sent.

ExpN is a list of expressions of the data being sent.

Explanation

The I2COUT command allows your program to write data to an I2C
device.

86

If...Then...Elseif...Else...Endif

IF Compare THEN {Gosub} Label
Compare, if true(not 0) jump to label or:

IF Compare THEN

Statements...

ELSEIF Compare

Statements...

Else

Statements...

Endif

The IF...THEN...ELSEIF...ELSE...ENDIF evaluates one or more
conditions and, if true, jumps to a label. If false then skip next function

Condition is a statement, such as "x = 7" that can be evaluated
as true or false.

Gosub is optional. Using GOSUB allows your program to return
to the next line of your program after running a subroutine.

Label is a label that specifies where to go in the event that the
condition is true.

Explanation

The If...Then command is a decision maker of sorts. There are two
ways in which If...Then can be used. The first tests a condition and, if
that condition is true, jumps to a point in the program specified by an
address label. The condition that IF...THEN tests is written as a
mixture of comparison and logic operators. The comparison opera-
tors are:

= equal < less than
<> not equa l >= greater than or equal to
> greater than <= less than or equal to

The second use of the If...Then can conditionally execute a group of
statements following the THEN. The statements must be followed by
Elseif or Else with an Endif.

87

Input

INPUT pin
Makes the specified pin an input

Pin is a variable or constant that specifies the I/O pin to use.

Explanation

There are several ways to make a pin an input. When a program
begins, all of the pins should be inputs. Input instructions PULSIN,
SERIN will automatically change the specified pin to input and
leave it in that state.

88

Lcdinit

LCDINIT RegSel\CLK\DB7\DB6\DB5\DB4,RdWrPin
Initilize the LCD display.

RegSel can be a constant or variable specifying the pin for the
“R/S” liine of the LCD.

CLK can be a constant or variable specifying the pin for the “E”
line of the LCD.

DB7-DB4 can be constants or variables specifying the data lines
of the LCD.

RdWrPin can be a constant or variable specifying the pin for the
“R/W” line of the LCD.

89

Lcdread

LCDREAD RSel\CLK\DB7\D6\D5\D4,RdWrPin, Address, [{mods} Var]
Reads the RAM on a LCD module using the Hitachi 44780 controller
or equivalent.

RSel is an expression of the pin number to use for the RegSel
(R/S line) of the LCD

CLK is an expression of the pin number to use the clock(E) line
of the LCD

D7-D4 are expressions of the 4 pin numbers used for the LCD
data line

RdWrPin is an optional expression of the pin number used to
connect to the RdWr line of the LCD

Address is an expression of the first address location of RAM
you are trying to read. Address from 0 to 127 return the current
character in the display memory. Address 128 and above return
Character RAM values.

Mods are command modifiers which can be used to modify the
variable directly.(See Command Modifiers)

Var is the variable where the value returned will be stored.

Note

When using the LCDREAD command you will need to first initialize
the LCD screen. See LCDINIT.

90
Lcdwrite

LCDWRITE RSel\CLK\D7\D6\D5\D4,{RdWrPin,} [{mods} Exp]
Sends Text to an LCD module using an Hitachi 44780 controller or
equivalent.

RSel is an expression of the pin number to be connected to the
LCD RegSel(R/S) line.

CLK is an expression of the pin number ot be connected to the
clock(E) line of the LCD.

D7-D4 are expressions of the 4 pin numbers to connect to the
LCD data lines.

RdWrPin is an option expression of the pin number to connect to
the RdWr pin of the LCD.

Mods are command modifiers which can be used to modify the
expression directly.

Exp can be a constant or variable that is the data to be written.

Note

When using the LCDWRITE command you will need to first initialize
the LCD screen. See LCDINIT.

LcdWrite Comand Table

There are several control commands that can be used with LCDWRITE
such as CLEAR and HOME. Each additional control command used
with LCDWRITE must be separated with a “,” (comma) inside of the
brackets “[...]”. Below is a chart of all the available control commands
for use with LCDWRITE.

Command Name Description
$101 CLEAR Clear Display
$102 HOME Return Home
$104 INCCUR Auto Increment Cursor(default)
$105 INCSCR Auto Increment Display
$106 DECCUR Auto Decrement Cursor
$107 DECSCR Auto Decrement Display
$108 OFF Display,Cursor, and Blink off
$10C SCR Display on,†Cursor and Blink off
$10D SCRBLK Display and Blink on, Cursor off
$10E SCRCUR Display and Cursor on, Blink off
$10F SCRCURBLK Display, Cursor, and Blink on
$110 CURLEFT Move Cursor left
$114 CURRIGHT Move cursor right
$118 SCRLEFT Move Display left
$11C SCRRIGHT Move Display right
$120 ONELINE Set display for 1 line LCDs
$128 TWOLINE Set display for 2 line LCDs
$140 CGRAM | address Set CGRAM address for R/W
$180 SCRRAM | address Set Display ram address for R/W
91

92

Let

LET Var = {mods} expression
Assign a value to a variable

Var is the variable to store the data in.

Expression is any type of expression.

Explanation

LET is an optional command; as an example Temp=2 is the same as
LET Temp=2. The LET command is often used to make programming
code more human readable.

Enhancements

The LET command also supports loading a list of values into arrays
of variables. For example:

myarray var byte(50)
temp var byte

temp = 10
myarray = 1,2,temp,4,5,6,7,8*temp,9,”Hello world”

As you can see from the example the list can include variables,
expressions and strings.

Important Note

The LET command also supports modifiers. (See Command Modifi-
ers)

93

Lookdown

LOOKDOWN value,{comparisonOp,}[value0,
value1,...valueN],resultVariable

Compare a value to a list of values according to the relationship speci-
fied by the comparison operator. Store the index number of the first
value that makes the comparison true into resultVariable. If no value in
the list makes the comparison true, resultVariable is unaffected.

Value is an expression to be compared to the values in the list.

ComparisonOp is optional and maybe one of the following:

= equal < less than
<> not equal >= greater than or equal to
> greater than <= less than or equal to

If no comparison operator is specified, Then it defaults to
equal (=).

Value0, value1... a list of expressions.

ResultVariable is a variable in which the index number will be
stored if a true comparison is found.

Explanation

LOOKDOWN searches values in a list, and stores the item number of the
first match in a variable. In other words, Lookdown compares the user
value to values in a list, the first comparison that is true, will return the
value of the index position the match was found. The index list starts at 0
not 1.

94

Lookup

LOOKUP index, [value0, value1,...valueN], resultVariable

Get the value specified by the index and store it in a variable. If the
index exceeds the highest index value of the items in the list, variable
is unaffected.

Index an expression of the item number of the value to be
retrieved from the list of values.

Value0, value1... a list of expressions.

ResultVariable is a variable in which the retrieved value will
be stored.

Explanation

Lookup could be considered the opposite of Lookdown. Lookup re-
turns an item from a list based on the item's position in the list. Posi-
tions start at 0.

95

Low

LOW pin
Make the specified pin output a low signal.

Pin is an expression of the I/O pin number to use.

Explanation

The LOW command will make the specified pin low (0 Volts), which
will also make the specified pin an output.

96

Nap

NAP period
Enter sleep mode for the specified period. Power consumption is
reduced while sleeping.

Period is an expression of the time in multiples of 2 millisecond
periods of sleep

Explanation

NAP is similar to Sleep, in that it runs the processor’s internal sleep
system, however unlike the Sleep command, nap has no special
options. All sleeping time is 2ms * period.

97

OnInterrupt

ONINTERRUPT intname,label
Set a label to jump to when the specified interrupt occures

IntName is the name of the interrupt(See table below)

Label is the name of the label to jump to when the interrupt
occures

Interrupts

IRQ0INT Irq0 pin interrupt
IRQ1INT Irq1 pin interrupt
IRQ2INT Irq2 pin interrupt
IRQ3INT Irq3 pin interrupt

WKPINT_0 WKP0 pin onchange interrupt
WKPINT_1 WKP1 pin onchange interrupt
WKPINT_2 WKP2 pin onchange interrupt
WKPINT_3 WKP3 pin onchange interrupt
WKPINT_4 WKP4 pin onchange interrupt
WKPINT_5 WKP5 pin onchange interrupt

TIMERVINT_OVF TimerV overflow interrupt
TIMERVINT_CMEB TimerV compare match A int
TIMERVINT_CMEA TimerV compare match B int

SCI3INT_TDRE Transmit Data Register Empty interrupt
SCI3INT_RDRF Read Data Register Full interrupt
SCI3INT_TEND Transmit End interrupt
SCI3INT_OER Overflow Error interrupt
SCI3INT_FER Frame Error interrupt
SCI3INT_PER Parity Error interrupt

IICINT I2C interrupt

ADINT Analog conversion complete int

HSERIALINT_TDRE Transmit Data Register Empty interrupt
HSERIALINT_RDRF Read Data Register Full interrupt
HSERIALINT_TEND Transmit End interrupt
HSERIALINT_OER Overflow Error interrupt
HSERIALINT_FER Frame Error interrupt
HSERIALINT_PER Parity Error interrupt

98

HSERVOINT_IDLE Any Servo Idle interrupt
HSERVOINT_IDLE0-31 # Servo Idle interrupt
HSERVOINT_USER HServo User Interrupt
HSERVOINT Hservo Interrupt

ATOM-Pro only(H8/3664/3694)
TIMERAINT Overflow interrupt

TIMERWINT_OVF Overflow interrupt
TIMERWINT_IMIEA Capture/Compare Match A int
TIMERWINT_IMIEB Capture/Compare Match B int
TIMERWINT_IMIEC Capture/Compare Match C int
TIMERWINT_IMIED Capture/Compare Match D int

ATOM-Pro Plus only(H8/3687)
RTCINT Real time clock interrupt(ATOM-Pro Plus only)

TIMERZ0INT_OVF Overflow interrupt
TIMERZ0INT_IMIEA Capture/Compare Match A int
TIMERZ0INT_IMIEB Capture/Compare Match B int
TIMERZ0INT_IMIEC Capture/Compare Match C int
TIMERZ0INT_IMIED Capture/Compare Match D int

TIMERZ1INT_UDF Underflow interrupt
TIMERZ1INT_OVF Overflow interrupt
TIMERZ1INT_IMIEA Capture/Compare Match A int
TIMERZ1INT_IMIEB Capture/Compare Match B int
TIMERZ1INT_IMIEC Capture/Compare Match C int
TIMERZ1INT_IMIED Capture/Compare Match D int

TIMERB1INT Overflow interrupt

SCI3_2INT_TDRE Transmit Data Register Empty interrupt
SCI3_2INT_RDRF Read Data Register Full interrupt
SCI3_2INT_TEND Transmit End interrupt
SCI3_2INT_OER Overflow Error interrupt
SCI3_2INT_FER Frame Error interrupt
SCI3_2INT_PER Parity Error interrupt

HSERIAL2INT_TDRE Transmit Data Register Empty interrupt
HSERIAL2INT_RDRF Read Data Register Full interrupt
HSERIAL2INT_TEND Transmit End interrupt
HSERIAL2INT_OER Overflow Error interrupt
HSERIAL2INT_FER Frame Error interrupt
HSERIAL2INT_PER Parity Error interrupt

99

Explanation

The OnInterrupt directive is a compile time action. It sets, at compile
time, the label that the specified interrupt will jump to when that
interrupt occurs. The OnInterrupt command does NOT enable an
interrupt or setup any registers specific to the specified interrupt.

All interrupts except for SCI3(and SCI3_2), IICINT and ADINT clear
their interrupt flags when they jump to the label specified in the
ONINTERRUPT directive.

See Enable,Disable

100

Output

OUTPUT pin
Makes the specified pin an output

Pin is an expression of the I/O pin number to use.

Explanation

The OUTPUT command allows your program to directly affect the
direction of the specified pin.

101

OWIN

OWIN Pin,Mode,{NCLabel,} [{Mods} Var]
Protocol used to communicate to 1-wire devices.

Pin is an expression of the I/O pin number to use for the One
wire command.

Mode is an expression indicating the mode of data transfer.
Mode controls placement of reset pulses, detection of presence
pulses, byte / bit input and normal / high speed transmission.
The proper value for Mode will depend on the 1-wire
device used. Consult the device data sheet to determine the
correct Mode. See chart below:

Mode Setting
 0 No Reset, Byte mode, Low speed
 1 Reset before data, Byte mode, Low speed
 2 Reset after data, Byte mode, Low speed
 3 Reset before and after data, Byte mode, Low speed
 4 No Reset, Bit mode, Low speed
 5 Reset before data, Bit mode, Low speed

NCLabel is a label the program can jump to if a connection
failure occurs with the OWIN command (ie. No chip present).

Mods are command modifiers which can be used to modify the
variable directly.

Var is the variable or variable array where the value(s) returned
will be stored.

Explanation

The 1-wire protocol was developed by Dallas Semiconductor as an
asynchronous serial communication format. It uses one I/O pin as a
common bi-direction serial data bus..

The 1-Wire protocol synchronizes the slave devices to the master.
The master initiates and controls all activities on the 1-Wire bus. 1-
Wire uses CMOS/TTL logic levels. A resistor connects the data line
of the 1-Wire bus to the 5V supply of the bus master.

102

OWOUT

OWOUT Pin,Mode,{NCLabel,} [{Mods} Exp]
Protocol used to communicate to 1-wire devices.

Pin is an expression of the I/O pin number used for the One wire
command.

Mode is an expression of the mode of data transfer. Mode
controls placement of reset pulses, detection of presence
pulses, byte / bit input and normal / high speed. The proper
value for Mode will depend on the 1-wire device used.
Consult the device data sheet to determine the correct Mode.
See chart below:

Mode Setting
 0 No Reset, Byte mode, Low speed
 1 Reset before data, Byte mode, Low speed
 2 Reset after data, Byte mode, Low speed
 3 Reset before and after data, Byte mode, Low speed
 4 No Reset, Bit mode, Low speed
 5 Reset before data, Bit mode, Low speed

NCLabel is a label the program can jump to if a connection
failure occurs with the OWOUT command (ie. No chip present).

Mods are command modifiers which can be used to modify the
variable directly.

Exp is an expression of the data to be sent.

Explanation

The 1-wire protocol was developed by Dallas Semiconductor as an
asynchronous serial communication format. It uses one I/O pin as a
common bi-direction serial data bus. The OWout and OWin com-
mands are tightly integrated. In most cases you will need both to talk
to any 1-wire part.

103

Pause

PAUSE milliseconds
Wait(stop) for the specified number of milliseconds.

Milliseconds is an expression of the length of the pause in ms.
Milliseconds may be any length up to a 32 bit number

Explanation

The PAUSE command delays the execution of the program for the
specified number of milliseconds.

104

Pauseclk

PAUSECLK cycles
Pause the program (do nothing) for the specified number clock
cycles.

Cycles is an expression of number of clock cycles to pause.

Explanation

The PAUSECLK command delays the execution of the program for
the specified number of clock cycles. Since each oscillator has a
variances of 0.05% you will need to determine your own timings. This
is only necessary if precision timing is required.

105

Pauseus

PAUSEUS halfmicroseconds
Pause the program (do nothing) for the specified number of micro
seconds.

Halfmicroseconds is an expression of the number of .5us
increments to pause

Explanation

The PAUSEUS command delays the execution of the program for the
specified number of halfmicroseconds.

106

PEEK...POKE

PEEK address, variable
POKE address, expression

Read/Write specified RAM location

Address is an expression of the address in memory to read/write
to.

Variable is the variable where the results will be stored or where
where the value to be written is stored..

Expression is an expression

Explanation

PEEK and POKE are considered advance commands and should
only be used by experienced users. The explanation of these com-
mands are kept short intentionally. Use of the PEEK command allows
a specific address to be read and store its value in the assigned
variable . The PEEK and POKE commands allow direct access to all
of the registers of the ATOMs H8/3664 processor.

Note The address value actually points to the address+ 0xF780.
Ram begins in the H8/3664 at 0xF780. The PEEK and POKE com-
mands automatically offset this address.

107

Pulsin

PULSIN pin, state, {TimeoutLabel,Timeout,} Var
Measure the width of a pulse.

Pin is an expression of the I/O pin number to use. This pin will be
placed into input mode during pulse measurement and left in that
state after the instruction finishes.

State is an expression(0 or 1) of the trigger state. 0 specifies a
(0-to-1) transition. 1 specifies a 1-to-0 transition (0).

TimeoutLabel is an optional label that specifies where to go if a
time out occurs. The default time out value is 65,535
microseconds.

Timeout is an expression of the amount of time to wait(in us)
before timing out. Timeout must be used with TimeoutLabel

Var is a variable in which the pulse duration will be stored.

Explanation

PULSIN will measure the pulse width on a specified pin. If the state
is zero, the width of a low pulse is measured. If the state is one, the
width of a high pulse is measured. The measured width is then
placed in Var. If the pulse edge never happens or the width pulse is
too great to measure Var will default to 0. Pulsin will timeout after
65,535 microseconds if the optional timeout label is not used.

PULSIN will return the pulse width in µs.

Pin State Zero,
Low pulse is measured

Intial Pin State
Pin State One, High pulse is
measured after first low state

108

Pulsout

PULSOUT pin, time
Output a pulse.

Pin is an expression of the pin number to use. This pin will be
placed into output mode immediately before the pulse and left in
that state after the instruction finishes.

Time is an expression of the duration of the pulse in .5µs
increments.

Explanation

PULSOUT will generate a pulse on the specified pin for the given
period. The pulse is generated by toggling the pin state twice. The
initial state of the pin will determine the polarity of the pulse. The pin
specified to generate the pulse is automatically made an output.

PULSOUT will generate a pulse with a period in 1 µs increments.
The minimum pulse width is 4 µs. You can not go below this value.

Pulsout Starts

Intial Pin State
Pin Left High for
specified state

109

Push...Pop

PUSH value
POP variable

Value is any value upto 32bits long

Variable can be any sized variable.

PUSH and POP are used to store a value on the stack and retrieve a
value from the stack.

Explanation

PUSH and POP are convientient ways of saving and storing tempo-
rary values without using extra defined variables. Push and Pop are
safe to use between gosubs.

110

Pwm

PWM pin, period, duty, cycles
Convert a digital value to analog output via pulse-width modulation.

Pin is an expression of the pin to use.
This pin will be placed into output mode during pulse generation.

Period is an expression of the period of the pulse width signal in
us.

Duty is an expression of the duty of the pulse width signal in us.

Cycles is an expression of the number of pulses to output..

Explanation

The PWM command outputs a user specified Pulse signal. The
period is the time in us of one pulse cycle. The duty is the time in us
that the pulse signal is high. The PWM command is software based
so it has the same limitations as any other software command. If you
need to output a PWM signal constantly and still be able to run other
commands see the HPWM command.

111

RCtime

RCTIME pin, state, {TimeoutLabel,TimeoutMultiple,}, resultVariable
Count time while pin remains in state—usually to measure the charge
or discharge time of a resistor and capacitor circuit. (RC)

Pin is am expression of the I/O pin number to use.
This pin will be placed into input mode and left in that state
when the instruction finishes.

State is an expression(1 or 0) of the state that will end the
RCTIME period.

TimeoutLabel is an optional label that specifies where to go if a
time out occurs. The default time out value is 65,535
microseconds.

Timeout is an expression of the amount of time to wait before
timing out.

ResultVariable is a variable in which the time measurement
will be stored.

Explanation

RCTIME can be used to measure the charge / discharge time of a
resistor and capacitor circuit (RC). RCTIME can also be used as a fast
stopwatch for recording events of very short duration. This allows mea-
suring resistance or capacitance using R or C sensors (i.e. thermistors
or capacitive humidity sensors); or respond to user input through a
potentiometer. (Typically 5k to 50k pot.)

112

Read

READ address,variable
Read a value from the builin eeprom(Only available on some AtomPro
modules)

Address is an expression of the address in the eeprom to read.

Variable any variable type may be used. However, thee eeprom
will always return an 8bit value which may be truncated if you use
a smaller variable type.

Explanation

READ can be used to get previously stored 8bit values from the
onboard EEPROM of supported ATOM-Pro modules. The
ATOM-Pro28 and 40 pin modules have 4kbyte eeproms The
ATOM-Pro 24 pin module does not have an onboard eeprom. An
external I2C eeprom may be connected to p10(SCL)/p11(SDA) to
use the READ/WRITE commands. The ATOM-Pro ARC and Mini-
ARC can have an external I2C eeprom added to their 8pin I2C
socket to support the READ/WRITE commands.

113

ReadDM

READDM address,[{Mods}variable]
Read a value from the builin eeprom(Only available on some AtomPro
modules)

Address is an expression of the addres to start reading at.

Variable any variable type may be used. However, the eeprom
will always return an 8bit value which may be truncated if you use
a smaller variable type.

Explanation

READDM can be used to get previously stored 8bit values from the
onboard EEPROM of supported AtomPro modules. ReadDM sup-
ports command modifiers. The ATOM-Pro28 and 40 pin modules have
4kbyte eeproms The ATOM-Pro 24 pin module does not have an
onboard eeprom. An external I2C eeprom may be connected to
p10(SCL)/p11(SDA) to use the READ/WRITE commands. The
ATOM-Pro ARC and Mini-ARC can have an external I2C eeprom
added to their 8pin I2C socket to support the READ/WRITE com-
mands.

114

Repeat...Until

REPEAT
....code....
UNTIL expression

Expression is an expression

Explanation

Repeat a group of commands until some expression is true. True
being any value other than 0.

115

Resume

RESUME
Specialized RETURN command for interrupts

no arguments

Explanation

When exiting from an interrupt the resume command must be used.

116

Reverse

REVERSE pin
Reverse the data direction of the specified pin.

Pin is an expression of the I/O pin number to use. This pin will be
placed into the opposite of its current input/output (I/O) mode.

Explanation

Reverse is a convenient way to switch the I/O direction of a pin. If a
pin is set as an input, the REVERSE command, will change it to an
output.

117

Serdetect

Serdetect pin,mode,var
Detect incoming baud rate. Used for auto detecting baud rates.

Pin is an expression of the I/O pin number that will be used to
receive the sync character.

Mode is the settings for Bits 13,14 and 15 of the BAUDMODE. Bit
13 is a flag that controls the number of data bits and parity (0=8
bits and no parity, 1=7 bits and even parity). Bit 14 controls
polarity(0=noninverted, 1=inverted). Bit 15 is not used by SERIN.
Constants from the below table can be used for Mode:

IMODE = Inverted
NMODE = Non Inverted
IEMODE = Inverted, Even Parity
NEMODE = Non Inverted, Even Parity
IOMODE = Inverted, Open Drain
NOMODE = Non Inverted, Open Drain
IEOMODE = Inverted, Even Parity, Open Drain
NEOMODE = Non Inverted, Even Parity, Open Drain

Var is a word sized variable that will hold the calculated
baudmode value which can be used by serin and serout.

Explanation

Serdect is used to auto detect an incoming baud rate. This is ideal
for applications or products that can be used at multiple baud rates
and be software switched. Serdetect can take the place of hard
wired jumpers or switches for changing baud rates.

In order for serdetect to calculate the bitrate a character must be
received. For inverted mode the binary value of the character to send
for calculating bitrate must be %XXXXXX01. For non inverted modes
the character must be %XXXXX101.(X = don’t care)

118

Serin

SERIN recieve{\flow},baudmode,{plabel,}{timeout,tlabel,}[inputData]
Receive asynchronous (e.g., RS-232) data.

Recieve is an expression of the I/O pin number to recieve data
through.

Flow is an optional expression of the I/O pin to be used for flow
control. This pin will switch to output mode and remain in that
state after the end of the instruction.

Baudmode is a 16-bit expression of the serial timing and
configuration. The lower 13 bits are the bit period. Bit 13 ($2000
hex) is a flag that controls the number of data bits and parity (0=8
bits and no parity, 1=7 bits and even parity). Bit 14 ($4000 hex)
controls polarity (0=noninverted, 1=inverted). Bit 15 ($8000 hex)
is not used by SERIN.

Plabel is an optional label where the program will jump to in the
event of a parity error.. This argument may only be provided if
baud mode indicates 7 bits, and even parity, otherwise the label
is ignored.

Timeout is an optional expression that tells SERIN how long, in
milliseconds, to wait for incoming data. If data does not arrive in
time, the program will jump to the address specified by Tlabel.

Tlabel is an optional label which must be provided along with
Timeout, indicating where the program should go in the event
that data does not arrive within the period specified by Timeout.

InputData is a list of variables and modifiers that tells SERIN
what to do with incoming data. SERIN can store data in a
variable or array; interpret numeric text (decimal, binary, or
hex), and store the corresponding value in a variable; wait for a
fixed or variable sequence of bytes; or ignore a specified number
of bytes. These actions can be combined in any order in the
inputData list.

119

Inverted? Parity? Baud Rate Constant
No No 300 N300
Yes No 300 I300
No Yes 300 NE300
Yes Yes 300 IE300
No No 1200 N1200
Yes No 1200 I1200
No Yes 1200 NE1200
Yes Yes 1200 IE1200
No No ... *N...
Yes No ... *I...
No Yes ... *NE...
Yes Yes ... *IE...

SERIN Modes

* 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600

Explanation

One of the most used forms of communication between electronic
devices is serial communication. The two types of serial
communication are asynchronous and synchronous. The SERIN and
SEROUT commands use an asynchronous method to receive and
send serial data. The term asynchronous means “no clock.” Data is
transmitted and received without the use of a separate “clock” wire.
The PC’s serial ports (COM ports, RS-232) use asynchronous serial
communication.

Improtant Note

1. There are several modifiers for use with the SERIN / SEROUT
commands. Refer to Command Modifier section of this manual.
2. There are many predefined serial baudmodes. See reserved
words for whole list.

120
Serout

SEROUT transmit,baudmode,{pace,}[outputData]
SEROUT transmit\flow,baudmode,{timeout,tlabel,}[outputData]
Transmit asynchronous (e.g., RS-232) data.

Transmit is an expression of the I/O pin number to send data
through.

Baudmode is a 16-bit expression of the serial timing and
configuration. The lower 13 bits are the bit period. Bit 13 ($2000
hex) is a flag that controls the number of data bits and parity (0=8
bits and no parity, 1=7 bits and even parity). Bit 14 ($4000 hex)
controls polarity (0=noninverted, 1=inverted). Bit 15 ($8000 hex)
determines whether the pin is driven to both states (0/1) or to
one state and open in the other (0=both driven, 1=open).

Pace is an optional expression of the time in milliseconds it
should pause between transmitting bytes.

OutputData is a list of expressions of the outgoing data.
SEROUT can transmit individual or repeating bytes; convert
values into decimal, hex or binary text representations; or trans
mit strings of bytes from variable arrays.

Flow is an optional expression of the I/O pin to use for flow
control(byte-by-byte handshaking). This pin will switch to input
mode and remain in that state after the instruction is completed.

Timeout is an optional expression of how long in milliseconds to
wait for permission to send. If permission does not arrive in time,
the program will continue at tlabel. Flow control must be used
with Timeout.

Tlabel is an optional label used with flow control and
timeout. Tlabel indicates where the program should go in the
event that permission to transmit data is not granted within the
period specified by the Timeout command. Tlabel must be used
with Timeout and flowcontrol.

121

SEROUT Modes

Driven? Inverted? Parity? Baud Rate Constant

Yes No No 300 N300

Yes Yes No 300 I300

Yes No Yes 300 NE300

Yes Yes Yes 300 IE300

No No No 300 NO300

No Yes No 300 IO300

No No Yes 300 NEO300

No Yes Yes 300 IEO300

Yes No No ... N...

Yes Yes No ... I...

Yes No Yes ... NE...

Yes Yes Yes ... IE...

No No No ... NO...

No Yes No ... IO...

No No Yes ... NEO...

No Yes Yes ... IEO...

* 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600

Table 2-2 lists the predefined Baudmode constants available in MBasic.
As you can see from the table there are several different baudmodes
for each actual baud rate. The following describes each baudmode
modifier:

N Normal (not inverted) signal
I Inverted signal
E Even Parity(otherwise no parity)
O Open drain(otherwise both high and low are driven)

Table 2-3 lists the command modifiers for the Output data

Explanation

One of the most used forms of communication between electronic
devices is serial communication. The two types of serial communication
are asynchronous and synchronous. The SERIN and SEROUT com-
mands use an asynchronous method to receive and send serial data.
The term asynchronous means “no clock.” Data is transmitted and
received without the use of a separate “clock” wire. The PC’s serial
ports (COM ports, RS-232) use asynchronous serial communication.

122

Servo

SERVO pin, rotation{, repeat}

Pin is an expression of the the pin number to control the servo

Rotation is an expression of the position you want the servo to
rotate to. A value from -2400 to + 2400 is used with 0 being
center. The maximum +2400 and minimum -2400 will
vary based on the servo being used. Take caution not to exceed
these values.

Repeat (optional)Specifies the number of internal cycles the
command runs(defaults to 20).

Explanation

The SERVO command automatically handles all servo pulse singal
calculations for you. SERVO is a foreground task.

123

Multiple Servo

MSERVO pin,
servo1{\servo2{\servo3{\servo4{\servo5{\servo6{\servo7{\servo8
{\servo9{\servo10{\servo11{\servo12}}}}}}}}}}}{, repeat}

Pin is an expression of the pin number controlling servo1. All
other servos are controlled by the next pin(ie
servo2,pin+1,servo3,pin+2 etc...)

Servo# is an expression of the position you want the servo to
rotate to. A value from -2400 to +2400 is used with 0 being center.
The maximum +2400 and minimum -2400 will vary based on the
servo being used. Take caution not to exceed these values.

Repeat (optional)Specifies the number of internal cycles the
command runs(defaults to 20).

Explanation

The MSERVO command automatically handles all servo pulse singal
calculations for you. MSERVO is a foreground task.

124

SetHserial

SETHSERIAL baudrate, databits, parity, stopbits

Baudrate is any one of the constants below.

Databits can be either of the constants below.

H8DATABITS
H7DATABITS

Parity can be any one of the constants below.

HNOPARITY
HEVENPARITY
HODDPARITY

Stopbits can be either of the constants below.

H1STOPBITS
H2STOPBITS

Explanation

The SETHSERIAL command sets the HSERIAL system baudrate and
modes. This command must be used before using a HSERIN/
HSEROUT command. The ENABLEHSERIAL directive must be in
your program for this command to function properly.

H300
H600
H1200
H2400
H4800
H7200
H9600
H12000
H14400
H16800
H19200
H21600
H24000

H26400
H28800
H31200
H33600
H36000
H38400
H57600
H62500
H125000
H250000
H312500
H500000

125

SetHserial2 (ATOM-Pro Plus only)

SETHSERIAL2 baudrate, databits, parity, stopbits

Baudrate is any one of the constants below.

Databits can be either of the constants below.

H8DATABITS
H7DATABITS

Parity can be any one of the constants below.

HNOPARITY
HEVENPARITY
HODDPARITY

Stopbits can be either of the constants below.

H1STOPBITS
H2STOPBITS

Explanation

The SETHSERIAL2 command sets the HSERIAL2 system baudrate
and modes. This command must be used before using a HSERIN2/
HSEROUT2 command. The ENABLEHSERIAL2 directive must be in
your program for this command to function properly.

H300
H600
H1200
H2400
H4800
H7200
H9600
H12000
H14400
H16800
H19200
H21600
H24000

H26400
H28800
H31200
H33600
H36000
H38400
H57600
H62500
H125000
H250000
H312500
H500000

126

Shiftin

SHIFTIN Data,Clock,Mode,[result{\bits}{,result{\bits}...}]
Shift data in from a synchronous-serial device.

Data is an expression of the I/O pin connected to the
synchronous-serial device’s output pin. The pin‘s I/O
direction will be changed to an input and will remain in that state
after the instruction is completed.

Clock is an expression of the I/O pin connected to the
synchronous-serial device’s clock input. The pin‘s I/O
direction will be changed to an output and will remain in that state
after the instruction is completed.

Mode is a value (0—7) or one of 8 predefined symbols that sets
the order in which data bits are to be arranged and the
relationship of clock pulses to valid data and the speed of
transmition. Here are the symbols,values, and their meanings:

MSBPRE 0 Data msb-first; sample bits before clock
LSBPRE 1 Data lsb-first; sample bits before clock
MSBPOST 2 Data msb-first; sample bits after clock
LSBPOST 3 Data lsb-first; sample bits after clock
FASTMSBPRE 4 Data msb-first; sample bits before clock
FASTLSBPRE 5 Data lsb-first; sample bits before clock
FASTMSBPOST 6 Data msb-first; sample bits after clock
FASTLSBPOST 7 Data lsb-first; sample bits after clock

(Msb is most-significant bit; the highest or left most bit of a nibble,
byte, word or long. Lsb is the least-significant bit; the lowest or right
most bit of a nibble, byte, word or long.)

(Fast mode runs SHIFTIN at the fastest possible rate. Normal mode
limits the speed to 100kbps)

Result is a variable where incoming data will be stored.

Bits is an optional entry setting how many bits (1—32) are to
be read by SHIFTIN. Defaults to 8 bits.

Explanation

Synchronous serial communications, unlike ansyncronous(i.e. SERIN
and SEROUT), is clocked by a master(The ATOM) and data bits are
read for each clock pulse. This form of communications is commonly
used by many peripherals(ADCs, DACs, clocks, memory devices,
etc). Trade names for synchronous-serial protocols include SPI and
Microwire.

127

Shiftout

SHIFTOUT Data,Cpin,Mode,[value{\bits}{,value{\bits}...}]
Shift data out to a synchronous-serial device.

Data is an expression of the I/O pin connected to the
synchronous-serial device’s input pin. The pin‘s I/O
direction will be changed to an output and will remain in that state
after the instruction is completed.

Clock is an expression of the I/O pin connected to the
synchronous-serial device’s clock input. The pin‘s I/O
direction will be changed to an output and will remain in that state
after the instruction is completed.

Mode is a value (0—7) or one of 8 predefined symbols that sets
the order in which data bits are to be arranged and the
relationship of clock pulses to valid data and the speed of
transmition. Here are the symbols,values, and their meanings:

MSBPRE 0 Data msb-first; sample bits before clock
LSBPRE 1 Data lsb-first; sample bits before clock
MSBPOST 2 Data msb-first; sample bits after clock
LSBPOST 3 Data lsb-first; sample bits after clock
FASTMSBPRE 4 Data msb-first; sample bits before clock
FASTLSBPRE 5 Data lsb-first; sample bits before clock
FASTMSBPOST 6 Data msb-first; sample bits after clock
FASTLSBPOST 7 Data lsb-first; sample bits after clock

Backwards Compatibility:

LSBFIRST 1 Data shifted out lsb-first.
MSBFIRST 0 Data shifted out msb-first.

Value is an expression of the data to be sent.

Bits is an optional entry setting how many bits (1—32) are to
be written by SHIFTOUT. Defaults to 8 bits.

Explanation

Synchronous serial communications, unlike ansyncronous(i.e. SERIN
and SEROUT), is clocked by a master(The ATOM) and data bits are
read for each clock pulse. This form of communications is commonly
used by many peripherals(ADCs, DACs, clocks, memory devices,
etc). Trade names for synchronous-serial protocols include SPI and
Microwire.

128

Sleep

Sleep time{,mode}
Sleep the specified time. Optionally change processor speeds or
enter standby.

Time is an expression of the time to sleep in approx 2ms
increments.

Mode is an optional expression of the mode to enter

Standby mode puts the processor to sleep and shuts off the oscilla-
tor. An external interrupt or a reset must be used to wake up the
processor:

SLEEPSTANDBY Enter standby. Wake on external int

The following modes cause the clock multiplier to be set and puts the
processor to sleep for the time specified in the Time argument:

SLEEPACTIVE Normal sleep
SLEEPACTIVE_8 1/8 system clock sleep
SLEEPACTIVE_16 1/16 system clock sleep
SLEEPACTIVE_32 1/32 system clock sleep
SLEEPACTIVE_64 1/64 system clock sleep

The following modes cause a direct transfer to another clock speed
divisor: The processor is NOT put to sleep and the Time argument is
ignored:

DIRECTACTIVE Normal system clock.
DIRECTACTIVE_8 1/8 system clock.
DIRECTACTIVE_16 1/16 system clock.
DIRECTACTIVE_32 1/32 system clock.
DIRECTACTIVE_64 1/64 system clock.

Same as above modes except these modes reset all system regis-
ters, TimerV, SCI3 and the AD hardware:

DIRECTACTIVERES Normal system clock
DIRECTACTIVERES_8 1/8 system clock
DIRECTACTIVERES_16 1/16 system clock
DIRECTACTIVERES_32 1/32 system clock
DIRECTACTIVERES_64 1/64 system clock

Explanation

The Sleep command allows you to run the ATOM-Pro at a lower
power drain and/or place it into a sleeping/standby state.

129

Sound

Sound pin,[duration1\note1,...durationN\noteN]
Generate specific note from one pin.

Pin is an expression of the I/O pin to use. This pin will be set to
an output during tone generation and left in that state after the
instruction is completed.

Duration is an expression of the length in milliseconds of the
tone(s).

Note is an expression of the frequency in hertz (Hz, 0
to 32767) of the first tone.

Explanation

The sound command generates a pulse at the specified frequency.
The sound command can be used to play tones through a speaker or
audio amplifier. Sound can also be used to play simple songs.

130

Sound2

Sound2
pin1\pin2,[duration1\note1\note2_1,...durationN\noteN\note2_N]
Generate specific notes one on each of the two defined pins.

Pin1 \ Pin2 are expressions of the I/O pins to use. These pins will
be set to an output during tone generation and left in that state
after the instruction is completed. The two specified pins can be
tied together via resistors(390ohm min) to create a single output
signal.

Duration(N) is an expression of the length in milliseconds of the
tone(s).

Note1_(N) is an expression of the frequency in hertz (Hz, 0
to 32767) of the first tone.

Note2_(N) is an expression of the frequency in hertz (Hz, 0
to 32767) of the second tone.

Explanation

Sound2 generates two pulses at the specified frequency one on each
pin specified. The sound2 command can be used to play tones
through a speaker or audio amplifier. Sound2 can also be used to
play more complicated songs. By generating two frequencies on
separate pins, a more defined sound can be produced.

131

Spmotor

SPMOTOR pin, delay, step

Pin is an expression of the first pin of 4 control pins required. If
P0 was used, the control pins would then be P0, P1, P2, P3.

Delay is an expression of the delay time in milliseconds. Delay
controls the speed at which the stepper motor will rotate. The
delay will also vary from stepper motor to stepper motor.

Step is an expression of the number of steps and the direction.
The direction is determined by the sign of Step. Positive values
being clockwise and negative numbers being counter clockwise.

Explanation

Stepper motors are precision motors which have an absolute amount of
travel per step. This is ideal in situation where precise positioning is nec-
essary. Stepper motors are commonly found in XY positioning tables.
Steppers motors can be purchased from several sources. Chances are
you may have a few laying around. They are commonly salvaged from old
disk drives and laser printers.

There are two types of stepper motors. Unipolar and Bipolar. Unipolar
means one pole. This is usually a common ground between 4 coils. Uni-
polar stepper motors are easier controlled with minimal circuitry. Bipolar
motors indicate two poles. Bipolar motors require additional circuity in
order to drive them. The SPMOTOR command does not support Bipolar
motors. In most cases you can easily distinguish between the two types.
Unipolar stepper motors have 5 wires. Bipolar motors usually have 4.

The use of the SPMOTOR command requires a simple circuit using a
darlington array (ULN2803A) to sink the load from the stepper motor.
Some small low power stepper motors can be driven from the
microcontroller directly. However this is not recommended. Other circuits
can be used to sink the load from the stepper motor. The ULN2803A is the
most commonly used.

132

Stop

STOP
Stops program execution.

Explanation

STOP prevents the program from executing any further instructions
until it is reset. The STOP command is identical to END.

133

Swap

SWAP variable,variable

Variable are the variables to be swapped

Explanation

Swap any two variable’s values with each other.

134

Toggle

TOGGLE pin
Invert the state of a pin.

Pin is an expression of the pin number to use.

Explanation

TOGGLE inverts the state of an I/O pin, changing 0 to 1 and 1 to 0.
The pin is automatically made an output.

135

While...Wend

While expression
...code...

Wend

Expression is an expression

Explanation

While some expression is true run code. True being any value other
than 0.

136

Write

WRITE address,expression
Write values to the onboard EEPROM of supported AtomPro mod-
ules

Address is an expression of the address to write

Expression can be any variable or constant or combination.

Explanation

WRITE is used to store 8bit values in supported AtomPro modules
EEPROM. The ATOM-Pro28 and 40 pin modules have 4kbyte
eeproms The ATOM-Pro 24 pin module does not have an onboard
eeprom. An external I2C eeprom may be connected to p10(SCL)/
p11(SDA) to use the READ/WRITE commands. The ATOM-Pro ARC
and Mini-ARC can have an external I2C eeprom added to their 8pin
I2C socket to support the READ/WRITE commands.

137

WriteDM

WRITEDM address,[{Mods}expression]
Write values to the onboard EEPROM of supported AtomPro mod-
ules

Address is an expression of the address to begin writing at

Expression can be any variable or constant or combination.

Explanation

WRITEDM is used to store 8bit values in supported AtomPro mod-
ules EEPROM. The ATOM-Pro28 and 40 pin modules have 4kbyte
eeproms The ATOM-Pro 24 pin module does not have an onboard
eeprom. An external I2C eeprom may be connected to p10(SCL)/
p11(SDA) to use the READ/WRITE commands. The ATOM-Pro ARC
and Mini-ARC can have an external I2C eeprom added to their 8pin
I2C socket to support the READ/WRITE commands.

138

139

140

Reserved Words

R
e

s
e

r
v

e
d

 W
o

r
d

s
R

e
s
e

r
v

e
d

 W
o

r
d

s
R

e
s
e

r
v

e
d

 W
o

r
d

s
R

e
s
e

r
v

e
d

 W
o

r
d

s
R

e
s
e

r
v

e
d

 W
o

r
d

s

141

Reserved Words

There are many reserved words which can not be used as labels,
constants or variables. All command/directive names are reserved
words. All words begining with numbers are reserved. All words
begining with “_” are reserved. The table below lists all other re-
served types and words.

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39

P40
P41
P42
P43
P44
P45
P46
P47
P48
P49
S_IN
S_OUT
NMODE
IMODE
NEMODE
IEMODE
NOMODE
IOMODE
NEOMODE
IEOMODE
N300
I300
NE300
IE300
NO300
IO300
NEO300
IEO300
N600
I600
NE600
IE600
NO600
IO600
NEO600
IEO600
N1200
I1200
NE1200
IE1200

142

NO1200
IO1200
NEO1200
IEO1200
N2400
I2400
NE2400
IE2400
NO2400
IO2400
NEO2400
IEO2400
N4800
I4800
NE4800
IE4800
NO4800
IO4800
NEO4800
IEO4800
N7200
I7200
NE7200
IE7200
NO7200
IO7200
NEO7200
IEO7200
N9600
I9600
NE9600
IE9600
NO9600
IO9600
NEO9600
IEO9600
N12000
I12000
NE12000
IE12000
NO12000
IO12000
NEO12000
IEO12000
N14400
I14400
NE14400
IE14400

NO14400
IO14400
NEO14400
IEO14400
N16800
I16800
NE16800
IE16800
NO16800
IO16800
NEO16800
IEO16800
N19200
I19200
NE19200
IE19200
NO19200
IO19200
NEO19200
IEO19200
N21600
I21600
NE21600
IE21600
NO21600
IO21600
NEO21600
IEO21600
N24000
I24000
NE24000
IE24000
NO24000
IO24000
NEO24000
IEO24000
N26400
I26400
NE26400
IE26400
NO26400
IO26400
NEO26400
IEO26400
N28800
I28800
NE28800
IE28800

143

NO28800
IO28800
NEO28800
IEO28800
N31200
I31200
NE31200
IE31200
NO31200
IO31200
NEO31200
IEO31200
N33600
I33600
NE33600
IE33600
NO33600
IO33600
NEO33600
IEO33600
N36000
I36000
NE36000
IE36000
NO36000
IO36000
NEO36000
IEO36000
N38400
I38400
NE38400
IE38400
NO38400
IO38400
NEO38400
IEO38400
N57600
I57600
NE57600
IE57600
NO57600
IO57600
NEO57600
IEO57600
N115200
I115200
NE115200
IE115200

NO115200
IO115200
NEO115200
IEO115200
N230400
I230400
NE230400
IE230400
NO230400
IO230400
NEO230400
IEO230400
N460800
I460800
NE460800
IE460800
NO460800
IO460800
NEO460800
IEO460800
H300
H600
H1200
H2400
H4800
H7200
H9600
H12000
H14400
H16800
H19200
H21600
H24000
H26400
H28800
H31200
H33600
H36000
H38400
H57600
H62500
H115200
H125000
H250000
H312500
H500000
HNOPARITY
HEVENPARITY

144

HODDPARITY
H8DATABITS
H7DATABITS
H1STOPBITS
H2STOPBITS
MSBPRE
LSBPRE
MSBPOST
LSBPOST
FASTMSBPRE
FASTLSBPRE
FASTMSBPOST
FASTLSBPOST
MSBFIRST
LSBFIRST
X_A
X_B
X_C
X_D
X_E
X_F
X_G
X_H
X_I
X_J
X_K
X_L
X_M
X_N
X_O
X_P
X_1
X_2
X_3
X_4
X_5
X_6
X_7
X_8
X_9
X_10
X_11
X_12
X_13
X_14
X_15
X_16
X_Units_On

X_Lights_On
X_On
X_Off
X_Dim
X_Bright
X_Lights_Off
X_Hail
X_Status_On
X_Status_Off
X_Status_Request
CLEAR
HOME
INCCUR
INCSCR
DECCUR
DECSCR
OFF
SCR
SCRBLK
SCRCUR
SCRCURBLK
CURLEFT
CURRIGHT
SCRLEFT
SCRRIGHT
ONELINE
TWOLINE
CGRAM
SCRRAM
TRAP0INT
TRAP1INT
TRAP2INT
TRAP3INT
BREAKINT
DIRECTINT
IRQ0INT
IRQ1INT
IRQ2INT
IRQ3INT
WKPINT_0
WKPINT_1
WKPINT_2
WKPINT_3
WKPINT_4
WKPINT_5
RTCINT (ATOMPro Plus only)
TIMERAINT (ATOMPro only)

145

TIMERWINT_OVF (ATOMPro only)
TIMERWINT_IMIEA (ATOMPro only)
TIMERWINT_IMIEB (ATOMPro only)
TIMERWINT_IMIEC (ATOMPro only)
TIMERWINT_IMIED (ATOMPro only)
TIMERVINT_OVF
TIMERVINT_CMEB
TIMERVINT_CMEA
SCI3INT_TDRE
SCI3INT_RDRF
SCI3INT_TEND
SCI3INT_OER
SCI3INT_FER
SCI3INT_PER
IICINT
ADINT
TIMERZ0INT_OVF (ATOMPro Plus only)
TIMERZ0INT_IMIEA (ATOMPro Plus only)
TIMERZ0INT_IMIEB (ATOMPro Plus only)
TIMERZ0INT_IMIEC (ATOMPro Plus only)
TIMERZ0INT_IMIED (ATOMPro Plus only)
TIMERZ1INT_UDF (ATOMPro Plus only)
TIMERZ1INT_OVF (ATOMPro Plus only)
TIMERZ1INT_IMIEA (ATOMPro Plus only)
TIMERZ1INT_IMIEB (ATOMPro Plus only)
TIMERZ1INT_IMIEC (ATOMPro Plus only)
TIMERZ1INT_IMIED (ATOMPro Plus only)
TIMERB1INT (ATOMPro Plus only)
SCI3_2INT_TDRE (ATOMPro Plus only)
SCI3_2INT_RDRF (ATOMPro Plus only)
SCI3_2INT_TEND (ATOMPro Plus only)
SCI3_2INT_OER (ATOMPro Plus only)
SCI3_2INT_FER (ATOMPro Plus only)
SCI3_2INT_PER (ATOMPro Plus only)
HSERIALINT_TDRE (ATOMPro Plus only)
HSERIALINT_RDRF (ATOMPro Plus only)
HSERIALINT_TEND (ATOMPro Plus only)
HSERIALINT_OER (ATOMPro Plus only)
HSERIALINT_FER (ATOMPro Plus only)
HSERIALINT_PER (ATOMPro Plus only)
HSERIAL2INT_TDRE (ATOMPro Plus only)
HSERIAL2INT_RDRF (ATOMPro Plus only)
HSERIAL2INT_TEND (ATOMPro Plus only)
HSERIAL2INT_OER (ATOMPro Plus only)
HSERIAL2INT_FER (ATOMPro Plus only)
HSERIAL2INT_PER (ATOMPro Plus only)
HSERVOINT_IDLE
HSERVOINT_IDLE0

146

HSERVOINT_IDLE1
HSERVOINT_IDLE2
HSERVOINT_IDLE3
HSERVOINT_IDLE4
HSERVOINT_IDLE5
HSERVOINT_IDLE6
HSERVOINT_IDLE7
HSERVOINT_IDLE8
HSERVOINT_IDLE9
HSERVOINT_IDLE10
HSERVOINT_IDLE11
HSERVOINT_IDLE12
HSERVOINT_IDLE13
HSERVOINT_IDLE14
HSERVOINT_IDLE15
HSERVOINT_USER
HSERVOINT
SLEEPACTIVE
SLEEPACTIVE_8
SLEEPACTIVE_16
SLEEPACTIVE_32
SLEEPACTIVE_64
DIRECTACTIVE
DIRECTACTIVE_8
DIRECTACTIVE_16
DIRECTACTIVE_32
DIRECTACTIVE_64
DIRECTACTIVERES
DIRECTACTIVERES_8
DIRECTACTIVERES_16
DIRECTACTIVERES_32
DIRECTACTIVERES_64
SLEEPSTANDBY
TCR_0 (ATOMPro Plus only)
TIORA_0 (ATOMPro Plus only)
TIORC_0 (ATOMPro Plus only)
TSR_0 (ATOMPro Plus only)
TIER_0 (ATOMPro Plus only)
POCR_0 (ATOMPro Plus only)
TCNT_0 (ATOMPro Plus only)
GRA_0 (ATOMPro Plus only)
GRB_0 (ATOMPro Plus only)
GRC_0 (ATOMPro Plus only)
GRD_0 (ATOMPro Plus only)
TCR_1 (ATOMPro Plus only)
TIORA_1 (ATOMPro Plus only)
TIORC_1 (ATOMPro Plus only)
TSR_1 (ATOMPro Plus only)

147

TIER_1 (ATOMPro Plus only)
POCR_1 (ATOMPro Plus only)
TCNT_1 (ATOMPro Plus only)
GRA_1 (ATOMPro Plus only)
GRB_1 (ATOMPro Plus only)
GRC_1 (ATOMPro Plus only)
GRD_1 (ATOMPro Plus only)
TSTR (ATOMPro Plus only)
TMDR (ATOMPro Plus only)
TPMR (ATOMPro Plus only)
TFCR (ATOMPro Plus only)
TOER (ATOMPro Plus only)
TOCR (ATOMPro Plus only)
RSECDR (ATOMPro Plus only)
RMINDR (ATOMPro Plus only)
RHRDR (ATOMPro Plus only)
RWKDR (ATOMPro Plus only)
RTCCR1 (ATOMPro Plus only)
RTCCR2 (ATOMPro Plus only)
RTCSR (ATOMPro Plus only)
LVDCR (ATOMPro Plus only)
LVDSR (ATOMPro Plus only)
SMR_2 (ATOMPro Plus only)
BRR_2 (ATOMPro Plus only)
SCR3_2 (ATOMPro Plus only)
TDR_2 (ATOMPro Plus only)
SSR_2 (ATOMPro Plus only)
RDR_2 (ATOMPro Plus only)
ICCR1 (ATOMPro Plus only)
ICCR2 (ATOMPro Plus only)
ICMR (ATOMPro Plus only)
ICIER (ATOMPro Plus only)
ICSR (ATOMPro Plus only)
SAR (ATOMPro Plus only)
ICDRT (ATOMPro Plus only)
ICDRR (ATOMPro Plus only)
TMB1 (ATOMPro Plus only)
TCB1 (ATOMPro Plus only)
TLB1 (ATOMPro Plus only)
PCRS1
PCRS2
PCRS3 (ATOMPro Plus only)
PCRS5
PCRS6 (ATOMPro Plus only)
PCRS7
PCRS8
TMRW (ATOMPro only)
TCRW (ATOMPro only)

148

TIERW (ATOMPro only)
TSRW (ATOMPro only)
TIOR0 (ATOMPro only)
TIOR1 (ATOMPro only)
TCNT (ATOMPro only)
GRA (ATOMPro only)
GRB (ATOMPro only)
GRC (ATOMPro only)
GRD (ATOMPro only)
FLMCR1
FLMCR2
FLPWCR
EBR1
FENR
TCRV0
TCSRV
TCORA
TCORB
TCNTV
TCRV1
TMA (ATOMPro only)
TCA (ATOMPro only)
SMR
BRR
SCR3
TDR
SSR
RDR
ADDRA
ADDRB
ADDRC
ADDRD
ADCSR
ADCR
PWDRL (ATOMPro Plus only)
PWDRU (ATOMPro Plus only)
PWCR (ATOMPro Plus only)
TCSRWD
TCWD
TMWD
ICCR (ATOMPro only)
ICSR (ATOMPro only)
ICDR (ATOMPro only)
SARX (ATOMPro only)
ICMR (ATOMPro only)
SAR (ATOMPro only)
ABRKCR
ABRKSR

BARH
BARL
BDRH
BDRL
PUCR1
PUCR5
PDR1
PDR2
PDR3 (ATOMPro Plus only)
PDR5
PDR6 (ATOMPro Plus only)
PDR7
PDR8
PDRB
PMR1
PMR5
PMR3 (ATOMPro Plus only)
PCR1
PCR2
PCR3 (ATOMPro Plus only)
PCR5
PCR6 (ATOMPro Plus only)
PCR7
PCR8
SYSCR1
SYSCR2
IEGR1
IEGR2
IENR1
IENR (ATOMPro Plus only)
IRR1
IRR2 (ATOMPro Plus only)
IWPR
MSTCR1
TSCR
BUFEB (ATOMPro only)
BUFEA (ATOMPro only)
PWMD (ATOMPro only)
PWMC (ATOMPro only)
PWMB (ATOMPro only)
CKS2 (ATOMPro only)
CKS1 (ATOMPro only)
CKS0 (ATOMPro only)
TOD (ATOMPro only)
TOC (ATOMPro only)
TOB (ATOMPro only)
TOA (ATOMPro only)
IMIED (ATOMPro only)

149

IMIEC (ATOMPro only)
IMIEB (ATOMPro only)
IMIEA (ATOMPro only)
IMFD (ATOMPro only)
IMFC (ATOMPro only)
IMFB (ATOMPro only)
IMFA (ATOMPro only)
IOB1 (ATOMPro only)
IOB0 (ATOMPro only)
IOA2 (ATOMPro only)
IOA1 (ATOMPro only)
IOA0 (ATOMPro only)
IOD1 (ATOMPro only)
IOD0 (ATOMPro only)
IOC2 (ATOMPro only)
IOC1 (ATOMPro only)
IOC0 (ATOMPro only)
TCNT15 (ATOMPro only)
TCNT14 (ATOMPro only)
TCNT13 (ATOMPro only)
TCNT12 (ATOMPro only)
TCNT11 (ATOMPro only)
TCNT10 (ATOMPro only)
TCNT9 (ATOMPro only)
TCNT8 (ATOMPro only)
TCNT7 (ATOMPro only)
TCNT6 (ATOMPro only)
TCNT5 (ATOMPro only)
TCNT4 (ATOMPro only)
TCNT3 (ATOMPro only)
TCNT2 (ATOMPro only)
TCNT1 (ATOMPro only)
TCNT0 (ATOMPro only)
GRA15 (ATOMPro only)
GRA14 (ATOMPro only)
GRA13 (ATOMPro only)
GRA12 (ATOMPro only)
GRA11 (ATOMPro only)
GRA10 (ATOMPro only)
GRA9 (ATOMPro only)
GRA8 (ATOMPro only)
GRA7 (ATOMPro only)
GRA6 (ATOMPro only)
GRA5 (ATOMPro only)
GRA4 (ATOMPro only)
GRA3 (ATOMPro only)
GRA2 (ATOMPro only)
GRA1 (ATOMPro only)

GRA0 (ATOMPro only)
GRB15 (ATOMPro only)
GRB14 (ATOMPro only)
GRB13 (ATOMPro only)
GRB12 (ATOMPro only)
GRB11 (ATOMPro only)
GRB10 (ATOMPro only)
GRB9 (ATOMPro only)
GRB8 (ATOMPro only)
GRB7 (ATOMPro only)
GRB6 (ATOMPro only)
GRB5 (ATOMPro only)
GRB4 (ATOMPro only)
GRB3 (ATOMPro only)
GRB2 (ATOMPro only)
GRB1 (ATOMPro only)
GRB0 (ATOMPro only)
GRC15 (ATOMPro only)
GRC14 (ATOMPro only)
GRC13 (ATOMPro only)
GRC12 (ATOMPro only)
GRC11 (ATOMPro only)
GRC10 (ATOMPro only)
GRC9 (ATOMPro only)
GRC8 (ATOMPro only)
GRC7 (ATOMPro only)
GRC6 (ATOMPro only)
GRC5 (ATOMPro only)
GRC4 (ATOMPro only)
GRC3 (ATOMPro only)
GRC2 (ATOMPro only)
GRC1 (ATOMPro only)
GRC0 (ATOMPro only)
GRD15 (ATOMPro only)
GRD14 (ATOMPro only)
GRD13 (ATOMPro only)
GRD12 (ATOMPro only)
GRD11 (ATOMPro only)
GRD10 (ATOMPro only)
GRD9 (ATOMPro only)
GRD8 (ATOMPro only)
GRD7 (ATOMPro only)
GRD6 (ATOMPro only)
GRD5 (ATOMPro only)
GRD4 (ATOMPro only)
GRD3 (ATOMPro only)
GRD2 (ATOMPro only)
GRD1 (ATOMPro only)

150

GRD0 (ATOMPro only)
SWE
ESU
PSU
EV
PV
E
P
FLER
PDWND
EB4
EB3
EB2
EB1
EB0
FLSHE
CMIEB
CMIEA
OVIE
CCLR1
CCLR0
CKS2
CKS1
CKS0
CMFB
CMFA
OVF
OS3
OS2
OS1
OS0
TCORA7
TCORA6
TCORA5
TCORA4
TCORA3
TCORA2
TCORA1
TCORA0
TCORB7
TCORB6
TCORB5
TCORB4
TCORB3
TCORB2
TCORB1
TCORB0
TCNTV7

TCNTV6
TCNTV5
TCNTV4
TCNTV3
TCNTV2
TCNTV1
TCNTV0
TVEG1
TVEG0
TRGE
OCKS0
TMA7 (ATOMPro only)
TMA6 (ATOMPro only)
TMA5 (ATOMPro only)
TMA3 (ATOMPro only)
TMA2 (ATOMPro only)
TMA1 (ATOMPro only)
TMA0 (ATOMPro only)
TCA7 (ATOMPro only)
TCA6 (ATOMPro only)
TCA5 (ATOMPro only)
TCA4 (ATOMPro only)
TCA3 (ATOMPro only)
TCA2 (ATOMPro only)
TCA1 (ATOMPro only)
TCA0 (ATOMPro only)
COM
CHR
PE
PM
STOP
MP
CKS1
CKS0
BRR7
BRR6
BRR5
BRR4
BRR3
BRR2
BRR1
BRR0
TIE
RIE
TE
RE
MPIE

151

TEIE
CKE1
CKE0
TDR7
TDR6
TDR5
TDR4
TDR3
TDR2
TDR1
TDR0
TDRE
RDRF
OER
FER
PER
TEND
MPBR
MPBT
RDR7
RDR6
RDR5
RDR4
RDR3
RDR2
RDR1
RDR0
ADF
ADIE
ADST
SCAN
CKS
CH2
CH1
CH0
TRGE
B6WI
TCWE
B4WI
TCSRWE
B2WI
WDON
B0WI
WRST
TCWD7
TCWD6
TCWD5
TCWD4

TCWD3
TCWD2
TCWD1
TCWD0
CKS3
CKS2
CKS1
CKS0
ICE (ATOMPro only)
IEIC (ATOMPro only)
MST (ATOMPro only)
TRS (ATOMPro only)
ACKE (ATOMPro only)
BBSY (ATOMPro only)
IRIC (ATOMPro only)
SCP (ATOMPro only)
ESTP (ATOMPro only)
STOP (ATOMPro only)
IRTR (ATOMPro only)
AASX (ATOMPro only)
AL (ATOMPro only)
AAS (ATOMPro only)
ADZ (ATOMPro only)
ACKB (ATOMPro only)
ICDR7 (ATOMPro only)
ICDR6 (ATOMPro only)
ICDR5 (ATOMPro only)
ICDR4 (ATOMPro only)
ICDR3 (ATOMPro only)
ICDR2 (ATOMPro only)
ICDR1 (ATOMPro only)
ICDR0 (ATOMPro only)
SVAX6 (ATOMPro only)
SVAX5 (ATOMPro only)
SVAX4 (ATOMPro only)
SVAX3 (ATOMPro only)
SVAX2 (ATOMPro only)
SVAX1 (ATOMPro only)
SVAX0 (ATOMPro only)
FSX (ATOMPro only)
MLS (ATOMPro only)
WAIT (ATOMPro only)
CKS2 (ATOMPro only)
CKS1 (ATOMPro only)
CKS0 (ATOMPro only)
BC2 (ATOMPro only)
BC1 (ATOMPro only)
BC0 (ATOMPro only)

152

SVA6 (ATOMPro only)
SVA5 (ATOMPro only)
SVA4 (ATOMPro only)
SVA3 (ATOMPro only)
SVA2 (ATOMPro only)
SVA1 (ATOMPro only)
SVA0 (ATOMPro only)
FS (ATOMPro only)
RTINTE
CSEL1
CSEL0
ACMP2
ACMP1
ACMP0
DCMP1
DCMP0
ABIF
ABIE
BARH7
BARH6
BARH5
BARH4
BARH3
BARH2
BARH1
BARH0
BARL7
BARL6
BARL5
BARL4
BARL3
BARL2
BARL1
BARL0
BDRH7
BDRH6
BDRH5
BDRH4
BDRH3
BDRH2
BDRH1
BDRH0
BDRL7
BDRL6
BDRL5
BDRL4
BDRL3
BDRL2

BDRL1
BDRL0
PUCR17
PUCR16
PUCR15
PUCR14
PUCR12
PUCR11
PUCR10
PUCR55
PUCR54
PUCR53
PUCR52
PUCR51
PUCR50
PIN17
PIN16
PIN15
PIN14
PIN12
PIN11
PIN10
PIN22
PIN21
PIN20
PIN57
PIN56
PIN55
PIN54
PIN53
PIN52
PIN51
PIN50
PIN76
PIN75
PIN74
PIN87
PIN86
PIN85
PIN84
PIN83
PIN82
PIN81
PIN80
PINB7
PINB6
PINB5
PINB4

153

PINB3
PINB2
PINB1
PINB0
IRQ3
IRQ2
IRQ1
IRQ0
TXD
TMOW
PMR5_WKP5
PMR5_WKP4
PMR5_WKP3
PMR5_WKP2
PMR5_WKP1
PMR5_WKP0
PCR17
PCR16
PCR15
PCR14
PCR12
PCR11
PCR10
PCR22
PCR21
PCR20
PCR57
PCR56
PCR55
PCR54
PCR53
PCR52
PCR51
PCR50
PCR76
PCR75
PCR74
PCR87
PCR86
PCR85
PCR84
PCR83
PCR82
PCR81
PCR80
SSBY
STS2
STS1

STS0
NESEL
SMSEL
LSON
DTON
MA2
MA1
MA0
SA1
SA0
NMIEG
IEG3
IEG2
IEG1
IEG0
WPEG5
WPEG4
WPEG3
WPEG2
WPEG1
WPEG0
IENDT
IENTA
IENWP
IEN3
IEN2
IEN1
IEN0
IENTB1 (ATOMPro Plus only)
IRRDT
IRRTA
IRRI3
IRRI2
IRRI1
IRRI0
IWPF5
IWPF4
IWPF3
IWPF2
IWPF1
IWPF0
MSTIIC
MSTS3
MSTAD
MSTWD
MSTTW
MSTTV
MSTTA

154

IICRST
IICX
DIRE
DIRS
DIRES
DIRL
DIRH
DIREL
DIREH
DIRA
DIRB
DIRC
DIRD
DIREA
DIREB
DIREC
DIRED
DIR0
DIR1
DIR2
DIR3
DIR4
DIR5
DIR6
DIR7
DIR8
DIR9
DIR10
DIR11
DIR12
DIR13
DIR14
DIR15
DIR16
DIR17
DIR18
DIR19
DIR20
DIR21
DIR22
DIR23
DIR24
DIR25
DIR26
DIR27
DIR28
DIR29
DIR30

DIR31
INE
INS
INES
INL
INH
INEL
INEH
INA
INB
INC
IND
INEA
INEB
INEC
INED
IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8
IN9
IN10
IN11
IN12
IN13
IN14
IN15
IN16
IN17
IN18
IN19
IN20
IN21
IN22
IN23
IN24
IN25
IN26
IN27
IN28
IN29
IN30
IN31

155

OUTE
OUTS
OUTES
OUTL
OUTH
OUTEL
OUTEH
OUTA
OUTB
OUTC
OUTD
OUTEA
OUTEB
OUTEC
OUTED
OUT0
OUT1
OUT2
OUT3
OUT4
OUT5
OUT6
OUT7
OUT8
OUT9
OUT10
OUT11
OUT12
OUT13
OUT14
OUT15
OUT16
OUT17
OUT18
OUT19
OUT20
OUT21
OUT22
OUT23
OUT24
OUT25
OUT26
OUT27
OUT28
OUT29
OUT30
OUT31

156

157

158

Index

In
d

e
x

In
d

e
x

In
d

e
x

In
d

e
x

In
d

e
x

Index

Symbols

!(NOT) 42
#ELSE 36
#ELSEIF 35
#ELSEIFDEF 36
#ELSEIFNDEF 36
#ENDIF 36
#IF 35
#IFDEF 35
#IFNDEF 35
#include 34
-(NEG) 41
<< 42
>> 42
[Let] 92
~(NOT) 42

A

A/D conversion 54
ABS 41
Add 42
ADIN 54
Aliases 24
analog voltage 54
And 42
Arrays 22
ATOM 16
ATOM format 44

B

BasicATOM-Pro 12
BCD2BIN 41
BIN2BCD 41
Binary 40
Bit 21
BIT0 26
BIT1 26
BIT10 26
BIT11 26
159

160
BIT12 26
BIT13 26
BIT14 26
BIT15 26
BIT16 26
BIT17 26
BIT18 26
BIT19 26
BIT2 26
BIT20 26
BIT21 26
BIT22 26
BIT23 26
BIT24 26
BIT25 26
BIT26 26
BIT27 26
BIT28 26
BIT29 26
BIT3 26
BIT30 26
BIT31 26
BIT4 26
BIT5 26
BIT6 26
BIT7 26
BIT8 26
BIT9 26
Bitwise Operators 42
Branch 55
Button 56
Byte 21
BYTE0 27
BYTE1 27
BYTE2 27
BYTE3 27
ByteTable 23

C

CGRAM 91
CLEAR 91
Clear 58
Combination I/O Modifiers 46
Comparison Operators 42
CON 30
Conditional compiling 34
Constants 30

COS 41
Count 59
CURLEFT 91
CURRIGHT 91

D

DCD 41
Debug 60
Debugin 61
DECCUR 91
Decimal 40
DECSCR 91
DIG 42
DIR# 28
DIRA 28
DIRB 28
DIRC 28
DIRD 28
DIRE 28
DIREA 28
DIREB 28
DIREC 28
DIRED 28
DIREH 28
DIREL 28
DIRES 28
DIRH 28
DIRL 28
DIRS 28
Disable 62
Divide 42
Do...While 63
DOS 17
Downstate 56
DTMFout 64
DTMFout2 65

E

Else 86
ELSEIF 86
Enable 66
End 70
Endif 86
Equal 42
Exception 71
161

162
F

FLASH 16
Floating Point Format 44
FloatTable 23
For...Next 72
forums 12
Freqout 73
frequency 59

G

GOSUB 20
Gosub...Return 75
Goto 76
GreaterThan 42
GreaterThan or Equal 42

H

H8/TINY 16
HEX - DEC - BIN 47
Hexadecimal 40
High 77
HIGHBIT 27
HIGHBYTE 27
HIGHNIB 27
HIGHWORD 27
Hitachi 16
HOME 91
HPWM 78

I

I/O Modifiers 46
I2Cin 84
I2Cout 85
IEEE format: 44
IF 86
If...Then...Elseif...Else...Endif 86
IHEX - IBIN 48
IN# 28
INA 28
INB 28
INC 28
INCCUR 91
Including files 34
INCSCR 91
IND 28

Indicated I/O Modifiers 46
INE 28
INEA 28
INEB 28
INEC 28
INED 28
INEH 28
INEL 28
INES 28
INH 28
INL 28
Input 87
Input Only Modifiers 46
INS 28
Integrated Development Environment 17
interrupts 66, 115
ISHEX - ISBIN 48

L

LcdInit 88
Lcdread 89
Lcdwrite 90
LessThan 42
LessThan Equal 42
Line Labels 20
Logical AND 43
Logical Exclusive OR 43
Logical NOT 43
Logical Operators 43
Logical OR 43
Long 21
LongTable 23
Lookup 94
Low 95
LOWBIT 26
LOWBYTE 27
LOWNIB 27
LOWWORD 27

M

Math Functions 41
MAX 42
microcontroller 16
MIN 42
Mod 42
Modifier usage 46
MSERVO 123
163

164
Mulitply 42
Multiple Servo 123

N

NCD 41
Nib 21
NIB0 27
NIB1 27
NIB2 27
NIB3 27
NIB4 27
NIB5 27
NIB6 27
NIB7 27
Not Equal 42
nterrupts 62
Numerical Types 40

O

OFF 91
ONELINE 91
OnInterrupt 97
Operator Precedence 40
Or 42
OUT# 29
OUTA 29
OUTB 29
OUTC 29
OUTD 29
OUTE 28
OUTEA 29
OUTEB 29
OUTEC 29
OUTED 29
OUTEH 29
OUTEL 29
OUTES 28
OUTH 29
OUTL 28
Output Only Modifiers 46
OUTS 28
OWIN 101
OWOUT 102

P

P0 31

P1 31
P10 31
P11 31
P12 31
P13 31
P14 31
P15 31
P2 31
P3 31
P4 31
P5 31
P6 31
P7 31
P8 31
P9 31
Pause 103
Pauseclk 104
Pauseus 105
PEEK...POKE 106
Pin constants 31
Pin Variables 28
Pop 109
Preprocessor 34
Program Memory 20
Pulsin 107
Pulsout 108
Push 109
Pwm 110

R

RAM 16, 20
RANDOM 41
random access memory 20
RCtime 111
Read 112
ReadDM 113
REAL 49
REP 49
Repeat...Until 114
repetitions 72
Reserved Words 140
Resume 115
REV 42
Reverse 116

S

SByte 21

166
SCR 91
SCRBLK 91
SCRCUR 91
SCRCURBLK 91
SCRLEFT 91
SCRRAM 91
SCRRIGHT 91
SDEC - SHEX - SBIN 47
Serdetect 117
Serin 118
Serout 120

SEROUT Modes 120
Servo 122, 124, 125
Shiftin 126
Shiftout 127
Signed I/O Modifiers 46
SIN 41
SKIP 50
Sound 129
Sound2 130
Spmotor 131
SQR 41
Stop 132
STR 49
Sub 42
Swap 133
SWord 21

T

Tables 23
Toggle 134
TTL-level 16
TWOLINE 91

U

UNARY Commands 41
USB 17

V

Variable Modifiers 25
Variables 21

W

WAIT 50
WAITSTR 50
While...Wend 135

Windows 17
Word 21
WORD0 27
WORD1 27
WordTable 23
Write 136
WriteDM 137

X

XOr 42
167

168

© 1999-2004 Basic Micro.com ® All Rights Reserved No portion of
this work may be reproduced without prior written consent from
Basic Micro Inc.

	Contents
	Introduction
	What is the BasicATOM-Pro ?
	This Manual
	On-line Discussion Forums
	Updates
	Technical Support
	The BasicATOM-Pro
	General Theory of Operation
	The ATOM-Pro Language
	How the ATOM-Pro Works
	Hardware
	The Basic's
	Line Labels
	RAM and Program Memory
	Variables
	Arrays
	Tables
	Aliases
	Variable Modifiers
	Pin Variables
	Constants
	Pin constants
	Preprocessor
	Preprocessor
	Including files
	Conditional compiling
	#IF constant expression
	#IFDEF name
	#IFNDEF name
	#ELSEIF constant expression
	#ELSEIFDEF name
	#ELSEIFNDEF name
	#ELSE
	#ENDIF
	Math
	Numerical Types
	Operator Precedence
	Math Functions
	Bitwise Operators
	Comparison Operators
	Logical Operators
	Floating Point Format
	Command Modifiers
	Modifier usage
	Syntax
	ADIN
	Branch
	Button
	Clear
	Count
	Debug
	Debugin
	Disable
	Do...While
	DTMFout
	DTMFout2
	Enable
	Enablehserial
	Enablehserial2 (ATOM-Pro Plus only)
	Enablehservo
	End
	Exception
	For...Next
	Freqout
	GetHSERVO
	Gosub...Return
	Goto
	High
	HPWM
	HSERIN
	HSERIN2 (ATOM-Pro Plus only)
	HSEROUT
	HSEROUT2 (ATOM-Pro Plus only)
	HSERVO
	I2Cin
	I2Cout
	If...Then...Elseif...Else...Endif
	Input
	Lcdinit
	Lcdread
	Lcdwrite
	LcdWrite Comand Table
	Let
	Lookdown
	Lookup
	Low
	Nap
	OnInterrupt
	Output
	OWIN
	OWOUT
	Pause
	Pauseclk
	Pauseus
	PEEK...POKE
	Pulsin
	Pulsout
	Push...Pop
	Pwm
	RCtime
	Read
	ReadDM
	Repeat...Until
	Resume
	Reverse
	Serdetect
	Serin
	SERIN Modes
	Serout
	SEROUT Modes
	Servo
	Multiple Servo
	SetHserial
	SetHserial2 (ATOM-Pro Plus only)
	Shiftin
	Shiftout
	Sleep
	Sound
	Sound2
	Spmotor
	Stop
	Swap
	Toggle
	While...Wend
	Write
	WriteDM
	Reserved Words
	Index

	Index
	Symbols
	!(NOT)
	#ELSE
	#ELSEIF
	#ELSEIFDEF
	#ELSEIFNDEF
	#ENDIF
	#IF
	#IFDEF
	#IFNDEF
	#include
	-(NEG)
	<<
	>>
	[Let]
	~(NOT)

	A
	A/D conversion
	ABS
	Add
	ADIN
	Aliases
	analog voltage
	And
	Arrays
	ATOM
	ATOM format

	B
	BasicATOM-Pro
	BCD2BIN
	BIN2BCD
	Binary
	Bit
	BIT0
	BIT1
	BIT10
	BIT11
	BIT12
	BIT13
	BIT14
	BIT15
	BIT16
	BIT17
	BIT18
	BIT19
	BIT2
	BIT20
	BIT21
	BIT22
	BIT23
	BIT24
	BIT25
	BIT26
	BIT27
	BIT28
	BIT29
	BIT3
	BIT30
	BIT31
	BIT4
	BIT5
	BIT6
	BIT7
	BIT8
	BIT9
	Bitwise Operators
	Branch
	Button
	Byte
	BYTE0
	BYTE1
	BYTE2
	BYTE3
	ByteTable

	C
	CGRAM
	CLEAR
	Clear
	Combination I/O Modifiers
	Comparison Operators
	CON
	Conditional compiling
	Constants
	COS
	Count
	CURLEFT
	CURRIGHT

	D
	DCD
	Debug
	Debugin
	DECCUR
	Decimal
	DECSCR
	DIG
	DIR#
	DIRA
	DIRB
	DIRC
	DIRD
	DIRE
	DIREA
	DIREB
	DIREC
	DIRED
	DIREH
	DIREL
	DIRES
	DIRH
	DIRL
	DIRS
	Disable
	Divide
	Do...While
	DOS
	Downstate
	DTMFout
	DTMFout2

	E
	Else
	ELSEIF
	Enable
	End
	Endif
	Equal
	Exception

	F
	FLASH
	Floating Point Format
	FloatTable
	For...Next
	forums
	Freqout
	frequency

	G
	GOSUB
	Gosub...Return
	Goto
	GreaterThan
	GreaterThan or Equal

	H
	H8/TINY
	HEX - DEC - BIN
	Hexadecimal
	High
	HIGHBIT
	HIGHBYTE
	HIGHNIB
	HIGHWORD
	Hitachi
	HOME
	HPWM

	I
	I/O Modifiers
	I2Cin
	I2Cout
	IEEE format:
	IF
	If...Then...Elseif...Else...Endif
	IHEX - IBIN
	IN#
	INA
	INB
	INC
	INCCUR
	Including files
	INCSCR
	IND
	Indicated I/O Modifiers
	INE
	INEA
	INEB
	INEC
	INED
	INEH
	INEL
	INES
	INH
	INL
	Input
	Input Only Modifiers
	INS
	Integrated Development Environment
	interrupts
	ISHEX - ISBIN

	L
	LcdInit
	Lcdread
	Lcdwrite
	LessThan
	LessThan Equal
	Line Labels
	Logical AND
	Logical Exclusive OR
	Logical NOT
	Logical Operators
	Logical OR
	Long
	LongTable
	Lookup
	Low
	LOWBIT
	LOWBYTE
	LOWNIB
	LOWWORD

	M
	Math Functions
	MAX
	microcontroller
	MIN
	Mod
	Modifier usage
	MSERVO
	Mulitply
	Multiple Servo

	N
	NCD
	Nib
	NIB0
	NIB1
	NIB2
	NIB3
	NIB4
	NIB5
	NIB6
	NIB7
	Not Equal
	nterrupts
	Numerical Types

	O
	OFF
	ONELINE
	OnInterrupt
	Operator Precedence
	Or
	OUT#
	OUTA
	OUTB
	OUTC
	OUTD
	OUTE
	OUTEA
	OUTEB
	OUTEC
	OUTED
	OUTEH
	OUTEL
	OUTES
	OUTH
	OUTL
	Output Only Modifiers
	OUTS
	OWIN
	OWOUT

	P
	P0
	P1
	P10
	P11
	P12
	P13
	P14
	P15
	P2
	P3
	P4
	P5
	P6
	P7
	P8
	P9
	Pause
	Pauseclk
	Pauseus
	PEEK...POKE
	Pin constants
	Pin Variables
	Pop
	Preprocessor
	Program Memory
	Pulsin
	Pulsout
	Push
	Pwm

	R
	RAM
	RANDOM
	random access memory
	RCtime
	Read
	ReadDM
	REAL
	REP
	Repeat...Until
	repetitions
	Reserved Words
	Resume
	REV
	Reverse

	S
	SByte
	SCR
	SCRBLK
	SCRCUR
	SCRCURBLK
	SCRLEFT
	SCRRAM
	SCRRIGHT
	SDEC - SHEX - SBIN
	Serdetect
	Serin
	Serout
	SEROUT Modes

	Servo
	Shiftin
	Shiftout
	Signed I/O Modifiers
	SIN
	SKIP
	Sound
	Sound2
	Spmotor
	SQR
	Stop
	STR
	Sub
	Swap
	SWord

	T
	Tables
	Toggle
	TTL-level
	TWOLINE

	U
	UNARY Commands
	USB

	V
	Variable Modifiers
	Variables

	W
	WAIT
	WAITSTR
	While...Wend
	Windows
	Word
	WORD0
	WORD1
	WordTable
	Write
	WriteDM

	X
	XOr

