

Basic Atom i

Warranty
Basic Micro warranties its products against defects in material and
workmanship for a period of 90 days. If a defect is discovered, Basic Micro
will at its discretion repair, replace, or refund the purchase price of the
product in question. Contact us at support@basicmicro.com. No returns will
be accepted without the proper authorization.

Copyrights and Trademarks
Copyright© 2001-2004 by Basic Micro, Inc. All rights reserved. PICmicro®
is a trademark of Microchip Technology, Inc. MBasic, The Atom and Basic
Micro are registered trademarks of Basic Micro Inc. Other trademarks
mentioned are registered trademarks of their respective holders.

Disclaimer
Basic Micro cannot be held responsible for any incidental, or consequential
damages resulting from use of products manufactured or sold by Basic
Micro or its distributors. No products from Basic Micro should be used in
any medical devices and/or medical situations. No product should be used in
a life support situation.

Contacts
Email: sales@basicmicro.com
Tech support: support@basicmicro.com
Web: http://www.basicmicro.com

Discussion List
A web based discussion board is maintained at http://www.basicmicro.com

Updates
In our continuing effort to provide the best and most innovative products,
software updates are made available by contacting us at
support@basicmicro.com or via our web site.

ii Basic Atom

Basic Atom iii

Table of Contents
SECTION 1: Learning about the Atom .. 1

Chapter 1 - Introduction ... 1

What is a Basic Atom?... 1
This Manual ... 1
On-line Discussion Forums.. 2
Information Resources... 2
Updates ... 2
Technical Support.. 2

Chapter 2 - The Basic Atom ... 3

Overview.. 3
Software... 3

The ATOM Language ... 3
How the ATOM Supports Software... 3

Hardware ... 4
Different models of Basic Atom .. 5
Available Development Boards... 5
Available Prototyping and Enclosure Boards.................................... 6

Chapter 3 - Getting Started .. 7

What You Will Need... 7
Follow These Steps ... 7
Software Setup .. 8
Hardware Setup... 9
Building Your Prototype or Project... 13
Running the IDE Software ... 14

Chapter 4 - Let’s Try it Out ... 17

Your First Basic Atom Project .. 17
Writing the Program.. 18
Troubleshooting.. 19
Program Notes ... 19

Making a Traffic Light .. 20
The Traffic Light Program... 21
Program Notes ... 22
Understanding the Build Window.. 23

Programming Multiple Basic Atoms ... 24
Summary ... 24

SECTION 2: Atom BASIC.. 25

iv Basic Atom

Chapter 5 - Compiler Preprocessor... 27

Including Files.. 27
#include .. 27

Conditional Compiling.. 28
#IF ... #ENDIF... 28
#IFDEF ... #ENDIF ... 29
#IFNDEF ... #ENDIF... 29
#ELSE .. 29
#ELSEIF ... 30
#ELSEIFDEF, #ELSEIFNDEF.. 30

Chapter 6 - Hardware, Memory, Variables, Constants............................. 33

Built-in Hardware ... 33
RAM... 33
Registers ... 33
EEPROM ... 34
Program Memory ... 34
Number Types ... 34
Variables.. 35

Defining variables ... 35
Variable Names .. 35
Array variables (strings).. 36
Using Array Variables to Hold Strings .. 37
Aliases.. 37
Variable Modifiers... 38
Pin Variables (Ports)... 40

Constants .. 42
Defining Constants ... 42
Constant Names... 42
Tables... 42
Pin Constants ... 43

Chapter 7 - Math and Functions .. 45

Number Bases ... 45
Math Functions .. 45

Out of Range Values .. 46
Unary Functions ... 46
Binary Functions... 52
Bitwise Operators ... 56
Comparison Operators ... 58
Logical Operators ... 59

Floating Point Math.. 60
Floating Point Format ... 61

Chapter 8 - Command Modifiers.. 63

I/O Modifiers (HEX, DEC, BIN) .. 65

Basic Atom v

I/O Modifier (STR)... 66
Signed I/O Modifiers (SHEX, SDEC, SBIN) ... 67
Indicated I/O Modifiers (IHEX, IBIN) .. 68
Combination I/O Modifiers (ISHEX, ISBIN).. 69
Output Only Modifiers (REAL, REP) .. 70

REAL .. 70
REP .. 70

Special Note re. Output Modifiers .. 71
Input-only Modifiers (WAITSTR, WAIT, SKIP) 72

WAITSTR ... 72
WAIT... 73
SKIP ... 73

Chapter 9 - Core BASIC Commands ... 75

Assignment and Data Commands ... 76
= (LET) ... 76
CLEAR.. 76
LOOKDOWN .. 77
LOOKUP... 77
SWAP... 78
PUSH, POP .. 79
PUSHW, POPW ... 79

Branching and Subroutines ... 81
GOTO... 81
BRANCH .. 81
GOSUB... RETURN.. 82
EXCEPTION... 83
IF... THEN... ELSEIF... ELSE... ENDIF .. 84

Looping Commands... 87
FOR... NEXT .. 87
DO... WHILE... 88
WHILE... WEND ... 90
REPEAT... UNTIL... 91

Input/Output Commands.. 93
DEBUG... 93
DEBUGIN ... 95
HSERIN.. 96
HSEROUT.. 98
HSERSTAT .. 99
SETHSERIAL ... 100
SERIN... 101
SEROUT... 103
SERDETECT.. 106
I2CIN .. 107
I2COUT .. 109
OWIN, OWOUT .. 112
SHIFTIN.. 114

vi Basic Atom

SHIFTOUT.. 116
Miscellaneous Commands... 118

END, STOP .. 118
HIGH, LOW, TOGGLE.. 118
INPUT, OUTPUT, REVERSE ... 119
SETPULLUPS .. 119
PAUSE ... 120
PAUSECLK .. 121
PAUSEUS .. 121
NAP .. 122
SLEEP.. 123

Chapter 10 - Specialized I/O Commands .. 125

Waveform I/O Commands ... 126
DTMFOUT.. 126
DTMFOUT2 .. 127
FREQOUT.. 129
HPWM .. 130
PWM... 132
PULSOUT... 134
PULSIN... 135
SOUND... 138
SOUND2... 139
SOUND8... 140

Special I/O Commands.. 142
ADIN... 142
BUTTON... 144
COUNT... 147
RCTIME.. 148
SERVO... 150
SPMOTOR ... 152

X-10 Commands.. 154
XIN.. 155
XOUT.. 157

LCD Commands .. 159
LCDINIT.. 159
LCDREAD .. 160
LCDWRITE... 162

Video ... 164
ENABLEVIDEO .. 164

Chapter 11 - Memory, Interrupts, Timers, etc. .. 167

Memory Commands .. 168
DATA.. 168
PEEK, POKE .. 169
READ, WRITE .. 170
READDM, WRITEDM... 171

Basic Atom vii

Interrupts ... 173
ENABLE, DISABLE .. 174
SETEXTINT.. 174
ONINTERRUPT.. 175
ONPOR, ONBOR, ONMOR.. 176
RESUME .. 177

Timers.. 178
SETCOMPARE... 179
SETCAPTURE.. 180
GETCAPTURE ... 181
TIMEWATCHDOG.. 182
GETWATCHDOG... 183
SETTMR0... 184
SETTMR1... 185
RESETTMR1.. 186
SETTMR2... 186

SECTION 3: Miscellaneous .. 189

Questions and Answers ... 190

Glossary... 195

List of Reserved Words.. 197

Index of Commands.. 209

Main Index ... 1

viii Basic Atom

Table of Figures

Figure 1 - Setting the port speed 9
Figure 2 - Hardware Setup Sequence 11
Figure 3 - Orienting the Module 12
Figure 4 - Typical Prototyping Area 13
Figure 5 - Breadboard internal connections 14
Figure 6 - IC orientation on Breadboard 14
Figure 7 - IDE screen 15
Figure 8 - IDE Workspace 15
Figure 9 - IDE Screen with program space maximized 16
Figure 10 - Blinker circuit on breadboard 18
Figure 11 - Traffic light 21
Figure 12 - IDE Screen while compiling Traffic Light program 22
Figure 13 - Simple Low Pass Filter 127
Figure 14 - Filter/combiner for DTMFOUT2 129
Figure 15 - Simple integrator/low pass filter 130
Figure 16 - Analog converter for PWM command 133
Figure 17 - Output of "pulsout" command 135
Figure 18 - Combining outputs for Sound2 140
Figure 19 - Combining outputs for SOUND8 141
Figure 20 - Measuring time with RCTIME 149
Figure 21 - Video output connections 166

Basic Atom 1

SECTION 1:
Learning about the Atom

Chapter 1 - Introduction
Thank you for purchasing the Basic Atom; an advanced microcontroller.
This manual will help you to set up, program, and test your Basic Atom.
Some procedures described assume the use of a suitable development
kit, available from Basic Micro.

What is a Basic Atom?
The Basic Atom is a self contained microcontroller; essentially a
microcomputer with memory and support circuitry in a single plug-in
package. The Basic Atom’s built-in command language is programmed
using a convenient BASIC-like compiler which runs on a PC. This special
version of BASIC is very powerful and easy to use, and runs from an
Integrated Development Environment (IDE) offering programming and
debugging tools.

This Manual
This manual is designed for both first time and experienced
microcontroller users. It describes setup and programming of the Basic
Atom. Hardware details and schematics are provided separately in the
form of data sheets.

Models covered by this manual are 24, 28 and 40 pin Basic Atom
modules. Programming information also applies to the Basic Atom
interpreter chips.

The Integrated Development Environment (IDE) is described in overview
form, with further details available from the on-screen help provided with
the program.

For more information about a particular device refer to its Data Sheet.
Printed data sheets are included with each product, and all data sheets
are available from the download section of the Basic Micro web site at
http://www.basicmicro.com.

2 Basic Atom

Data sheets for other products mentioned in this manual are
available from the manufacturers, and can usually be found
easily online using a search engine such as Google.

We continually update and improve this manual. All updates will be
made available for download from our web site.

On-line Discussion Forums
We maintain discussion forums at http://www.basicmicro.com in order
to facilitate information exchange among users. The discussion forums
are free and will help you to find information and assistance quickly.

Information Resources
In addition to other resources mentioned in this manual, you can also
find useful information by using the search feature of the online
discussion forums at the Basic Micro web site.

Updates
Atom software updates will be available to new and current customers.
There are several ways to receive notifications of updates. We recom-
mend joining the discussion forums at http://www.basicmicro.com
where update announcements will be posted.

Technical Support
Technical support is provided via email and the discussion forums at
www.basicmicro.com. When technical support is required please send
email to support@basicmicro.com. In order to assure a proper response.
Please include a copy of the program you are having problems with, the
hardware you are using, ATOM revision number, prototyping board and
so on. By including this information with your email, you can help us to
answer your questions quickly.

Basic Atom 3

Chapter 2 - The Basic Atom

Overview
The Basic Atom is a complete microcontroller with a wide range of
programmable functions. User-programming is done with a BASIC-like
compiler running on a PC, and the resulting object code is downloaded
to the Atom.

For development and testing, Basic Micro provides development boards
which have computer and power connections, as well as a breadboard
area for circuit design (see page 5). Once your circuit is finalized, you
can use a Basic Micro prototyping board (see page 6) or design your
own board to accommodate the Basic Atom module. One-time projects
can be left on the prototyping board permanently.

Software

The ATOM Language

The ATOM language is a version of BASIC designed for control
applications. It’s based on Basic Micro’s Mbasic, with added functions to
support the Basic Atom’s hardware capabilities.

How the ATOM Supports Software

The Basic Atom includes the following software support facilities:

• a microprocessor to run your program

• a program loader to install programs developed using the Basic
compiler

• approximately 14K bytes of flash program ROM, for storing
programs and constants. Flash can be erased and rewritten
many times.

• Between 256 and 300 bytes of available RAM for calculations
and variable storage (384 bytes total minus system overhead).

• 256 bytes of EEPROM available for constants, user data, etc.1

1 Program memory (FLASH) can also be used for storage of user data, but allows fewer

re-write cycles than EEPROM. See the section on Tables.

4 Basic Atom

The runtime environment2 is not permanently stored in the CPU. This
gives greater flexibility in that commands and functionality can be added
and modified without changing hardware. The runtime environment is
automatically generated by the compiler, and can vary in size between
as little as 250 bytes for a very simple program to a maximum of around
3000 bytes of program memory. As more functions are used in a
program, the runtime environment will automatically expand to include
support for these functions. The runtime environment is optimized and
only includes support for functions actually used in your program. The
support code for a function used in a program is only included once,
even if the function is used many times.

Hardware
The Basic Atom is an integrated microcontroller based on a PIC16F876
or PIC16F877 processor chip.

Users are strongly advised to obtain a copy of the PIC16F87X
data sheet, available at http://www.microchip.com which gives
essential hardware details for the chip used to build the Atom
module.

The Basic Atom modules add support circuitry (RS-232, voltage
regulation, oscillator, etc.) and a program loader to the PIC chip, and are
available as 24, 28 or 40 pin plug-in (DIP) modules. For more specific
information, refer to the data sheet supplied with each Basic Atom
module (data sheets are also available on our web site, in the Download
section, as PDF documents).

For OEM use the Basic Atom interpreter chips are available without the
added support circuitry (see page 5).

Important note: The PIC chip cannot be used in place of a
Basic Atom since it lacks features added by Basic Micro. If you
want to design your own support circuitry use the Basic Atom
interpreter chip.

The Basic Atom is programmed by means of a serial data stream at
115 kb/s. This data format is supported by all modern PCs (since 1996
or before).The Basic Atom and AtomPro development boards provide an

2 The runtime environment is sometimes known as a “software brain”, runtime library,

or runtime module.

Basic Atom 5

RS-232 connector that can be connected by a standard cable to your
PC’s serial port.

Different models of Basic Atom

The various Basic Atom models differ as follows;

24 pin module 16 I/O pins (P0 to P15) plus 4 solder pad connections
(1 digital input, 3 digital I/O or analog inputs). Based on
PIC16F876 chip.

28 pin module 16 I/O pins (P0 to P15) plus 4 additional digital I/O or
analog input pins. Based on PIC16F876 chip.

40 pin module 16 I/O pins (P0 to P15) plus16 additional digital I/O or
analog input pins. Based on PIC16F877 chip.

28 pin interpreter
chip

The interpreter chip used in the 24 and 28 pin modules
without the support circuitry (for OEM applications).

40/44 pin
interpreter chips

The interpreter chip used in the 40 pin modules without
the support circuitry (for OEM applications). Available in
two package styles.

Available Development Boards

Basic Micro supplies the following development boards3. Data sheets are
available on our website (download area) for review.

Development boards include an experimenter “breadboard” area for
easy project development.

Board Description
Atom Development Board For Basic Atom 24 pin modules.
Atom Pro Development
Board

For Basic Atom 24, 28 and 40 pin modules as
well as Atom Pro modules.

BasicAtom Video Board For Basic Atom 24 or 28 pin modules. Use your
Atom to generate composite video signals.

3 New products are frequently added. Please visit our website for the latest list of

available development boards.

6 Basic Atom

Available Prototyping and Enclosure Boards

Basic Micro supplies the following prototyping and enclosure boards4.
Data sheets are available on our website (download area) for review.

Prototyping and enclosure boards include a circuit area with plated
through holes for permanent projects.

Board Description
Basic Atom Enclosure
Board

For Basic Atom 24 pin modules. Fits in plastic
case for finished projects.

Basic Atom LCD
Enclosure Board

For Basic Atom 24 pin modules. Fits in plastic
case. Standard LCD connector provided.

Basic Atom Mini
Prototyping Board

For Basic Atom 24 pin modules. Small size, low
cost for simpler applications.

Basic Atom Super
Prototyping Board

For Basic Atom 24, 28 and 40 pin modules.
Larger size for more complex finished products.

Basic Atom Interpreter
Chip Prototyping Board

For Basic Atom 28 or 40 pin (DIP) chips.
Provides support circuitry for development and
finished projects.

4 New products are frequently added. Please visit our website for the latest list of

available prototyping and enclosure boards.

Basic Atom 7

Chapter 3 - Getting Started
This section explains in simple terms how to get started using your Basic
Atom. While some hardware basics are explained and a simple example
given, general hardware design for Basic Atom controlled devices is
beyond the scope of this manual.

What You Will Need
Project development is normally done using hardware prototypes. Basic
Micro provides Development Boards for this purpose. If you’re using
your own development environment suitable power and RS-232
connections will be needed.

You will need:

• A Basic Atom 24, 28 or 40 pin module.

• An Atom or Atom Pro development board (or your own suitable
hardware development environment).

• A suitable power source.

• An RS-232 connector and cable to connect to a PC serial port.

• Basic Atom software (Integrated Development Environment)

• A PC running Windows 9x, 2000, NT4 or XP. A CD drive is required
to install the software included with the development kit; software
may also be downloaded from our website.

We recommend a Pentium 266 or faster: operation may be quite slow
with lesser computers, though they should work.

All items except the PC are supplied with Basic Atom development kits.

Follow These Steps
Designing a project is as simple as following these steps.

1. Set up the Basic Atom software (IDE).

2. Build your circuit on a development board (these have
“breadboards” to allow easy wiring and frequent changes).

3. Write the software to control your circuit and download it to the
Basic Atom.

8 Basic Atom

4. Debug and revise your hardware and software.

What you do next depends on what you need. If you’re building:

• a one-time project, and won’t need the development board for
future projects, you can leave the circuit on the breadboard. Note
that the long-term stability of breadboard projects may not be as good
as those with soldered connections.

• a one-time or limited production project, but want to re-use the
breadboard for other projects, or want smaller size and the
permanence of soldered connections, transfer your project to a
Basic Atom prototyping board.

• a project for production, or just want to do your own board, design
a suitable board incorporating your circuit.

Note: For production lots use a development or prototyping board to
program Basic Atom modules or interpreter chips, then transfer the
programmed modules or chips to your production boards. You don’t
need your circuit on the board used for programming.

Software Setup
Software setup is easy and follows standard Windows practice.

1. With Windows running, insert the CD into the CD drive.5

2. If the installation program doesn’t automatically start, open an
Explorer or My Computer window, navigate to the CD, and double
click the “setup” icon or the file “setup.exe”.

3. Installation from this point is automatic. Once done, there will be an
ATOM icon on your desktop.

4. Double click the ATOM icon to open the Integrated Development
Environment (IDE).

5. Go to Tools : System Setup and choose the serial port to be used for
connecting the development board (see Figure 1). Close the
program.

5 Current software is also available for download at our web site.

Basic Atom 9

Figure 1 - Setting the port speed

That’s it! You’re ready to start programming and working with your Basic
Atom as soon as it’s connected and ready.

Hardware Setup
You will probably want to use a Basic Atom (or Atom Pro) development
board which provides power, RS-232 programming connector, and a
hardware breadboard area. Setup is easy (see also Figure 2):

1. Make sure you’re in a static free working environment.
Microprocessors of all types are sensitive to static electricity and can
be damaged if not properly handled.

2. Plug your Basic Atom module into the development board socket,
making sure to align it at the end marked Pin 1 (see Figure 3). Be
sure not to bend any of the pins.

Important Note: If the pins seem too widely spaced to fit into
the socket, hold the module by the ends, and gently “roll” the
leads against a tabletop. Do this for each side until the pins
slide easily into the socket.

3. Connect the provided RS-232 cable (9 pin connectors) to the 9 pin
socket on the development board.

10 Basic Atom

4. Plug the other end of the cable into an available serial port on your
PC.6

5. When you’re ready to begin programming and experimentation,
plug the 9VDC power adapter into the socket on the development
board.

Important note: Never make hardware changes in the
prototype area or plug in or unplug the Basic Atom module
with the power connected!

If you’re not using a development board, you’ll need to provide your
own RS-232 and power connections. The Basic Atom has a voltage
regulator and an RS-232 level converter built-in. See the data sheet for
connection details.

6 If the PC uses a 25 pin connector, use a 9 to 25 pin adapter, available at most

computer stores. PCs without serial ports can be connected using a USB to RS-232
adapter.

Basic Atom 11

1

2 3

Atom Pro Development
board shown

Basic Atom 24 pin
shown

To computer
RS232 port

To wall
outlet

Figure 2 - Hardware Setup Sequence

12 Basic Atom

Make sure to orient the module correctly before plugging it in to the
development or prototyping board. Look for the notch at one end of the
socket, then align Pin 1 of the module with Pin 1 of the socket. Pin 1 on
each module is next to a tiny 6 pin IC so it’s easy to find. If your module
has fewer pins than the socket, it must be plugged in at the Pin 1 end of
the socket.

If you’re still in doubt as to the location of Pin 1 on the socket, look at
the underside of the board. Pin 1 has a square solder pad, the rest are
round.

Notch

Basic Atom 24 pin Basic Atom 28 pin

Basic Atom 40 pin

Socket

Pin 1 Pin 1

Pin 1

Pin 1
Figure 3 - Orienting the Module

Basic Atom 13

Building Your Prototype or Project
While it’s beyond the scope of this manual to discuss hardware design in
detail, here are a few pointers to get you started.

The best way to design your hardware prototype or project is to use a
Basic Micro development board (see our web site and the list on page 5
for available models). Development boards include a breadboard area
for easy experimentation and circuit development.

Figure 4 shows a typical breadboard (Atom Pro Development board
shown). Connections for microcontroller I/O, Vss and Vdd are provided.
The board is marked to indicate voltages and pin numbers.

Breadboard

Microcontroller
I/O connections

VDD

VSS

Figure 4 - Typical Prototyping Area

Component leads can be inserted directly into the holes in the
breadboard. Jumpers can be made with #22 AWG or #24 AWG wire.

14 Basic Atom

Sockets in the breadboard are grouped together as shown below in
Figure 5. This makes it easy to connect components together or to “fan
out” voltages or I/O pins to multiple connections.

Figure 5 - Breadboard internal connections

The breadboard uses standard 0.10” spacing so small integrated circuits
or other DIP (dual inline package) or SIP (single inline package) compon-
ents can be inserted directly. Make sure that DIP components are
inserted so as to “bridge” the central area, as shown in Figure 6.

Figure 6 - IC orientation on Breadboard

Once you’ve designed your experimental circuit or prototype, you’re
ready to program the Basic Atom and try it out!

Running the IDE Software
This section gives a brief overview of the IDE to help you get started.
More complete information, including how to use the debugger, is
included in the online help file.

Double click the Atom icon (on your desktop or in your Start menu),
then click on File | New. Choose to edit a Basic file from the popup
window, and choose a filename (we used “test.bas” for our filename).
Your screen should now look like this:

Basic Atom 15

Figure 7 - IDE screen

The window is divided into three main areas: The File Explorer Window
(at top left) displays directories and files.

Figure 8 - IDE Workspace

You can get more window room for your program by turning off the File
Explorer Window: either click the X at its top right corner, or from the
View menu choose Toolbars, and uncheck the “Workspace” toolbar.

16 Basic Atom

The Build area (at bottom) shows error messages and compile time
messages. Turn it off by clicking the X in its top right corner, or via the
View | Toolbars menu (“Results” toolbar). Once you’re done writing
your program, you should turn it back on again before compiling (so you
can see messages).

You’ll notice that the programming area isn’t maximized; just click the
maximize button (on the “test.bas” bar) and your window will look like
this:

Figure 9 - IDE Screen with program space maximized

Once you’ve typed in your program, you can test it for errors by clicking
the Compile button. This will compile your program, but will not write
the output to the Basic Atom.

Alternately, you can simply click the Program button, which will compile
your program and send it to the Basic Atom. The program will start
running on the Basic Atom immediately. Now let’s use a concrete
example to help you figure all this out.

Basic Atom 17

Chapter 4 - Let’s Try it Out
To help you get started on your project, we’ll start by setting up a simple
circuit or two, writing programs to operate them, and testing to see that
they work. Once you’ve been through the procedure, you’ll be all set to
work on your own.

Here’s what you’ll learn:

1. How to set up a simple circuit on a breadboard.

2. How to write a simple program to control the circuit.

3. How to install and run the program on the Atom.

4. A few troubleshooting pointers.

Once you’re done, we’ll make a slightly more complex circuit, with a
few additional programming details, and after that you’re on your own.

Your First Basic Atom Project
We’ll start with a simple project to flash a LED (light emitting diode).
Here’s everything you’ll need:

! A Basic Atom (we used a 24 pin module).
! A development board (we used the Atom Pro development board).
! Power supply, cables, etc. supplied with the development board.
! A PC with the Basic Atom software installed.
! A red LED with wire leads.
! A 2.7 kΩ ¼ W resistor. (Other values in the range of 1 kΩ to 4.7 kΩ

should work).
! Some #22 AWG or #24 AWG solid insulated wire for jumpers.

The circuit is very simple, just a resistor and the LED
in series. Note that the anode end of the LED
(connected to the resistor) may be marked by a
longer lead or a flat side on circular LEDs.

Before going any further, make sure you’ve
followed all the steps for Getting Started,
beginning on page 7.

You can wire this circuit on the breadboard area of
the development board (see Figure 10). We’ve
shown the Atom Pro development board

P0

LED

2.7K

Vss (gnd)

18 Basic Atom

breadboard; others are similar.

2.7Kred LED

Vss

P0

Figure 10 - Blinker circuit on breadboard

Don’t worry too much about the orientation of the LED at this point; it if
doesn’t blink after programming, try reversing it.

Writing the Program

By this time you should have the Basic Atom IDE software installed and
running on your computer. Next:

1. Plug in the power for the development board.

2. Using the IDE, click on File | New, and choose a Basic file.

3. Type in the following short program;

Main
high P0
pause 200
low P0
pause 200

goto main
End

Use the TAB key to indent lines (this is only needed to make the
program easier to read; the compiler doesn’t care).

4. Click on the Program button on the IDE. The program should
compile, and be downloaded to the Basic Atom without errors.

5. Watch the LED: it should be flashing 2.5 times per second.

Basic Atom 19

Troubleshooting

If the IDE shows errors, recheck that you’ve typed the program correctly;
it’s not likely that there would be some obscure, hard to find error in
such a simple program.

If the LED doesn’t flash, it is probably plugged in “backwards” Unplug it
and plug it in with the leads reversed. Still doesn’t flash? Check the
voltage on both resistor leads: it should alternate between 5V and 0V on
the end connected to P0, and between about 1.2V and 0V on the end
connected to the LED.

Program Notes

Let’s take another look at that program and add some comments.

Main ;Start of program
high P0 ;Set P0 to “high” (5V)
pause 200 ;Wait for 200 ms
low P0 ;Set P0 to “low” (0V)
pause 200 ;Wait another 200 ms

goto main ;Do it again, forever
End

“Main” is a label; in this case it’s at the beginning of the program. We
need it so that the “goto” can find its way back to restart the program,
making operation continuous.

“End” is not a label, it’s an instruction to the compiler, telling it that the
program code is now finished.

Permanency

Once you’ve programmed the Basic Atom, the program remains
permanently in memory until you overwrite it with another program. Try
this:

1. Unplug the power from the development board.

2. Disconnect the RS-232 programming cable.

3. Reconnect the power to the development board.

Programs in memory start automatically as soon as the power is applied
and your LED is flashing again; just as it was before. Note that you can
restart a “stuck” program by pressing the RESET button on the
development board.

20 Basic Atom

Making a Traffic Light
As a second project we’ll wire up a miniature “traffic light”. The idea is to
show some slightly more complex programming techniques, as well as
more sophisticated use of the breadboard.

The traffic light uses three LEDs, one red, one yellow and one green.
We’ll set it up to follow this sequence:

! A 10 second red light, followed by
! A 10 second green light, followed by
! A flashing green “priority” light, and finally
! A 3 second yellow (amber) light

The cycle repeats forever until you turn off the power.

You’ll need the following parts in addition to the ones from our first
project:

! A yellow LED
! A green LED
! A 2.7 kΩ ¼ watt resistor
! A 1.5 kΩ ¼ watt resistor

(We’re using a lower value resistor to make up for the yellow LED’s
reduced efficiency, which would otherwise make it too dim.)

The circuit is really just the first project repeated 3 times:

P1 P2

1.5K

red LED yellow LED green LED

P0

2.7K

Vss (gnd)

2.7K

Basic Atom 21

Wire it up on the breadboard as shown in Figure 11.

red LED
yellow LED

green LED

P2 P1 P0

Vss

Figure 11 - Traffic light

If you’re using the Atom Pro development board, the P0, P1 and P2
connections are available at the edge of the breadboard area.

The Traffic Light Program

Open a new basic file in the IDE and type in the following program:

main
counter var word ;must define variables
red con P0 ;red LED on P0
yellow con P1 ;yellow LED on P1
green con P2 ;green LED on P2
low red ;turn all the LEDs off
low yellow
low green

loop ;main program loop
high red ;turn on red LED
pause 10000 ;wait 10 seconds
low red ;turn off red LED
high green ;turn on green LED
pause 10000 ;wait 10 seconds
low green ;turn off green LED
for counter=1 to 10 ;This loop flashes the

high green ;green LED 10 times
pause 300
low green
pause 300

next
high yellow ;turn on yellow LED
pause 3000 ;wait 3 seconds

22 Basic Atom

low yellow ;turn off yellow LED
goto loop ;start over again
end

Once you’re done, make sure the Basic Atom is connected to the
computer, and click the Program button. Your program should compile
and download without errors, and your LEDs should light in the
sequence described above. Compile time errors are probably a result of
typing mistakes; the printed program above is taken directly from a
working model without retyping.

The IDE window should look much like this once you’re done:

Figure 12 - IDE Screen while compiling Traffic Light program

Program Notes

This program has a couple of additional features that are worth
discussing.

The section following Main defines variables and constants. Unlike many
basics, all variables used in Atom Basic must be defined before they’re
used. So a simple “for x = 1 to 10” won’t work unless you’ve defined “x”
at the beginning of your program.

Basic Atom 23

Here we’ve defined the variable “counter” as a “word” variable (i.e. 16
bits) in the line: counter var word.

We’ve also defined some constants. For convenience, instead of having
to remember that P0 is red, P1 yellow, etc. we’ve defined the constants
“red”, “yellow”, and “green” (e.g. red con P0).

Definitions are followed by a label “loop”. This program will be repeated
endlessly, but if we loop back to “main” each time all the variables and
constants will be defined over and over. This isn’t needed, so we’ve
provided “loop” as another re-entry point.

Understanding the Build Window

The bottom pane in Figure 12 shows the results of compiling your
program. In our example, scrolling the Build Window will show the
following lines:

Compiling...
C:\MY DOCUMENTS\TRAFFIC.BAS
Tokenizing...
Ram Memory Bytes Used(System): 12
Ram Memory Bytes Used(Stack): 60
Ram Memory Bytes Used(User): 2
Ram Memory Bytes Free: 278

Program Memory Bytes Used(Library): 955
Program Memory Bytes Used(Tokens): 133
Program Memory Bytes Used(Total): 1088
Program Memory Bytes Free: 12772

Tokens Compiled: 56
Lines Compiled: 27

No Errors Detected
Programming...

Most of the lines are self-explanatory, a few notes will help to clarify
others.

“Tokenizing” is the process of converting input words into numbers
(tokens) recognized by the compiler. The number of “tokens compiled”
is the number of unique words in your program.

RAM Memory Bytes are used by the system, stack and User. In our
example we defined the variable “counter” as a “word”, i.e. two bytes,
as shown above.

24 Basic Atom

Programming Multiple Basic Atoms
Multiple Basic Atom modules can be programmed in sequence from the
same source program; just connect each one in turn to the computer
and click the Program button.

Note that the program will be recompiled for each Basic Atom
programmed, the object code (i.e. the code that’s downloaded to the
Basic Atom module) is not retained by the IDE for re-use.

Summary
You’ve learned about the components that make up a Basic Atom
development system. You’ve learned to run the software, write a
program, set up the hardware, and test a couple of simple projects. By
now you should be feeling quite at home with the Basic Atom.

Now it’s time to plan your own applications and projects. The rest of this
manual is devoted to Atom BASIC details, compiler directives, syntax,
etc.

Basic Atom 25

SECTION 2:
Atom BASIC

This group of sections includes all Atom BASIC commands, functions,
keywords, etc. grouped in logical sequence.

Important: While the commands, functions and keywords
described in this manual are similar to those for other Basic
Micro products, there are some detail differences. Please refer
to the correct manual for the Basic Micro product you are
using.

Chapter 5 – Compiler Preprocessor ...27

Commands and switches to instruct the compiler.

Chapter 6 – Hardware, Memory, Variables, Constants33

Fundamental concepts used in programming Atom BASIC.

Chapter 7 – Math and Functions ...45

Math operators, functions and precedence used in Atom BASIC

Chapter 8 – Command Modifiers...63

Modifiers that apply to certain Atom BASIC commands.

Chapter 9 – Core BASIC Commands ..75

These are the commands found in many conventional BASIC
implementations, including looping, assignment, switches, etc.

Chapter 10 – Specialized I/O Commands125

I/O and control commands applicable to a wide variety of situations.

Chapter 11 – Memory, Interrupts, Timers, etc.167

Commands applicable to specific devices; stepper motors, displays, etc.

26 Basic Atom

This page intentionally left blank

Basic Atom 27

Chapter 5 - Compiler Preprocessor
In most cases the operation of the compiler is automatic and
transparent: you simply write your program and click the Program
button. However, the Atom BASIC compiler includes a “preprocessor”
that accepts instructions (“directives”) to control compiling according to
rules you specify.

The preprocessor has two basic functions:

1. It lets you keep a collection of frequently used program modules
(“snippets” of code) and include them whenever you need them.

2. It provides conditional tests (IF ... THEN) to modify the code you
compile, allowing you to use the same basic code to compile
different versions of a program.

Including Files
Perhaps you’ve written a subroutine to control an LCD display, and
you’d like to use this subroutine in various different programs. You can
save the subroutine on disk, and “include” it whenever you need it.

#include

The #include directive is used to “paste” program modules at compile
time. Modules are pasted at the location of the #include directive.

Syntax

#include “filename”

#include “partial or complete path to file”

Example

Assume that your LCD subroutine called “lcd.bas” and is in the same
directory as your main program. The subroutine contains the label
“displaywrite”. You can include this in your program like this:

main
(some code)

gosub displaywrite
(some more code)
#include “lcd.bas”
end

28 Basic Atom

The #include directive simply pastes in the code from lcd.bas as if it was
part of your program.

If lcd.bas is in a subdirectory of your program directory, just put the
partial path, for example:

#include “modules\lcd.bas”

If it’s in another directory, you can include the relative or absolute path,
using normal Windows notation.

Conditional Compiling
Sometimes the same program may be used for slightly different
applications. For example, if you’ve written a program to display
temperature from a sensor, you may want versions for Celsius and
Fahrenheit degrees, or perhaps you want one version to use an LCD
display and a different one to output serial data to your computer. Most
of the code is identical, but some constants, variables and subroutines
may differ.

Conditional compiling lets you set a “switch” in your program (usually a
constant, but not necessarily) that controls compiling. You can have
different constants, variables, or even different sections of code
compiled depending on the switch or switches that you set.

#IF ... #ENDIF

Similar to the usual BASIC if ... then conditional branch. Specifies code
to be compiled if the expression is true.

Syntax

#IF constant expression

Example
fahr con 1
#IF fahr=1
... some code ...
#ENDIF
... rest of program ...

This will compile the code between #if and #endif only if fahr=1. If fahr
has any other value, the code between #if and #endif will be skipped.

Basic Atom 29

#IFDEF ... #ENDIF

Compiles the following code (up to #ENDIF) only if the constant or
variable is defined, or if the label appears previously in the code.

Syntax

#IFDEF name ; name is a variable, constant or label

Example 1
temperature var byte
#IFDEF temperature
... some code ...
#ENDIF
... rest of program ...

This will compile “some code” because “temperature” has been defined.

Example 1
main
... some code ...
#IFDEF main
... conditional code ...
#ENDIF
... rest of program ...

This will compile “conditional code” because the label “main” precedes
the #IFDEF condition.

#IFNDEF ... #ENDIF

Compiles the code between #IFNDEF and #ENDIF only if the constant
or variable has not been defined, or the label has not been previously
used in the program. In effect, it’s the inverse of #IFDEF.

#ELSE

Allows you to have two code snippets, and compile one or the other
depending on the result of the #IF, #IFDEF or #IFNDEF directive.

Syntax

#ELSE

30 Basic Atom

Example
fahr con 1
#IF fahr=1
... some code ...
#ELSE
... some other code ...
#ENDIF
... rest of program ...

Compiles “some code” if fahr = 1 and “some other code” if fahr has any
other value.

#ELSEIF

Allows multiple snippets of code to be compiled based on multiple tests.
Regard this as an extension of the #ELSE directive.

Syntax

#ELSEIF constant expression

Example
screentype con 1
#IF screentype=1
... some code ...
#ELSEIF screentype=2
... some other code ...
#ELSEIF screentype=3
... yet more code ...
#ENDIF
... rest of program ...

Compiles “some code”, “some other code”, or “yet more code”
respectively when screentype is 1, 2 or 3. If screentype has some other
value, compilation simply continues with “rest of program” and none of
the snippets is compiled.

#ELSEIFDEF, #ELSEIFNDEF

Equivalents of #ELSEIF for the #IFDEF and #IFNDEF directives.

Syntax

#ELSEIFDEF name

#ELSEIFNDEF name

Basic Atom 31

Example

Similar to the example given for #ELSEIF.

Note: All compiler preprocessor directives must start with the # sign. If you
forget this, results will not be what you expect.

32 Basic Atom

This page intentionally left blank

Basic Atom 33

Chapter 6 - Hardware, Memory, Variables,
Constants

Built-in Hardware
The Basic ATOM has hardware functions that are independent of the
main microcontroller. Examples include:

! Analog to digital converters
! Pulse width modulators
! UARTS
! Timers, etc.

Built in hardware runs independently of the microcontroller, and can be
set up via your program then allowed to run independently.

RAM
RAM is Random Access Memory, which is “volatile” (i.e. the contents
are lost if power is removed). The microcontroller chip has 512 bytes of
RAM. RAM is used to store:

! Variables
! Values used by the system (registers) – 128 bytes
! Program stack, counters, etc. – approx. 80 to 120 bytes.

This leaves approximately 300 bytes available for user data.

Registers
The microcontroller on which the Atom is based, uses a number of
registers to control its internal operation, set status, etc. These registers
occupy the lower addresses each bank of the built in RAM. Registers are
accessible by using their numeric addresses (see the PIC16F87X data
sheet for these addresses) or by using the register name.

All PIC16F876/7 register names are pre-defined in Atom BASIC and may
be used as variables to access and modify register bits.

Registers and reserved addresses occupy 128 bytes of the total 512
bytes of RAM.

34 Basic Atom

EEPROM
EEPROM is Electrically Erasable Programmable Read Only Memory. It is
similar to RAM in that numbers can be stored in EEPROM and retrieved
from EEPROM, but it is slower than RAM (particularly for writing values)
and has a limited number of write-cycles (about 10 million) before it fails.

The Atom has 256 bytes of EEPROM available for use in your programs.

EEPROM is normally used for storing constants that don't change
frequently. It is accessed by means of the DATA, READ, READDM,
WRITE and WRITEDM commands (see page 168).

Program Memory
Programs are stored in “Flash EEPROM” which can be re-written many
times. Flash is non-volatile, so your programs will be saved during power
off periods. More complex programs require more memory. Program
memory can also be used to store constants (see Tables on page 42).
The Basic Atom has about 14000 bytes of program memory. Flash
provides fewer rewrite cycles before failure than EEPROM.

Number Types
Atom BASIC lets you store numbers with varying precision to minimize
memory space requirements. The following number types are used:

Table 1 - Number Types

Type Bits Value range
Bit 1 1 or 0
Nib 4 0 to 15
Byte 8 0 to 255
Sbyte 8 -127 to +128
Word 16 0 to 65535
Sword 16 -32767 to +32768
Long 32 -2147483647 to +2147483648
Float 32 ± 2 -126 to ± 2 127

Use the smallest number type that gives the range and precision you
need. This will minimize the use of RAM.

Basic Atom 35

Variables
Variables are used to store temporary values while your program runs.
Like most compiled BASICs, with Atom BASIC you must define your
variables before using them. Variables are always stored in user RAM.

Defining variables

Variables are defined with the VAR keyword. They may be defined as
any of the number types described in Table 1. Remember to define
variables as SBYTE, SWORD, LONG or FLOAT if they may have negative
values.

Syntax

variable name VAR number type

Examples
red var byte
tick var nib
switch var bit
totals var long
fraction var float

Note that the compiler will automatically “pack” nib and bit variables to
use as few bytes as possible.

Variable Names

Variable names must start with a letter, but they can contain letters,
numbers, and special characters. They are case-independent so RED and
red are the same variable. Variable names may be up to 1024 characters
long. We recommend that they be made long enough to be meaningful,
but short enough for easy reference. The length of a variable name does
not affect the length of your compiled program. You may not define the
same variable twice within a program.

The following may not be used for variable names:

! Atom BASIC reserved words (see page 197)
! label names used within your program

Important: Please note that the following single letters are
reserved and may not be used as variables: b, c, d, p, r, s, z.

36 Basic Atom

Note: Some of the examples in this manual use selected single letter
variables for brevity and simplicity in short code segments.

Array variables (strings)

Arrays are special variables used in BASIC to hold a number of related
values. Atom BASIC provides for linear arrays (also known as one-
dimensional arrays or “subscripted” variables).

Important: Array variables should not use the same names as
existing simple variables. See page 192 for more information
about this.

Syntax to Define an Array

variable name VAR number type(number of cells)

Example

Suppose you want to store values for 5 temperature sensors in an array.
Each sensor requires a WORD value. Define the array as:

temp var word(5)

This sets aside 5 “words” in RAM for your array, numbered 0 to 4.

Note: Atom BASIC numbers arrays starting from 0, so the first value is
arrayname(0) etc. The last value is arrayname(4) in this case.7

You can access each value as if it was a separate variable, for example
you can access the third value as:

word(2)

The number “2” in this case is called the “index”. The third value has an
index of 2 because the array is numbered 0, 1, 2, 3, 4.

When accessing array values, the index can be a variable:

cntr var byte
temp var word(5)
for cntr=0 to 5
temp(cntr)= cntr+15
next

7 If you find counting from 0 confusing, simply define your array to have one more cell

than needed, and ignore cell 0. This wastes one cell, of course.

Basic Atom 37

This will assign the values of 15, 16, 17, 18 and 19 to the array cells, so
that temp(3) would have a value of 18, etc.

Using Array Variables to Hold Strings

A common use of array variables is to hold "strings" of ASCII characters.
When used for this purpose, arrays should be defined as byte variables.

Important: Bounds checking is not performed. It is the
programmer's responsibility to make sure that the string to be
stored does not exceed the length of the array.8

Example

The following program excerpt will illustrate this use of array variables.

var byte mystring(20)

mystring = "This is a test"

will assign "T" to mystring(0), "h" to mystring(1), etc.

Aliases

An alias gives you a means of assigning more than one name to the
same variable. You may need temporary variables at different points in
your program, but not want to use too much RAM to store all of them.

Syntax

new variable VAR existing variable

Example
sensor VAR byte
eye VAR sensor

This will create a variable “eye” that points to the same RAM location as
the variable “sensor”. In your program you might have a loop:

for sensor = 1 to 10
(some code or other)
next

Then later in your program you could have a loop:

8 If the string length exceeds the array length, characters will simply overwrite the next

variable(s) in the order that they were originally defined.

38 Basic Atom

for eye = 2 to 8
(some code or other)
next

Sensor and eye would use the same RAM location, thus saving 1 byte of
RAM.

Variable Modifiers

Variable modifiers are used to access parts of a variable. For example,
you could access the high or low nibble of a “byte” variable. Modifiers
can be used both when variables are defined, and “on the fly” during
program execution.

Note: Modifiers won’t work with FLOAT type variables.

Syntax

variable.modifier

A complete list of modifiers appears on page 39.

Example 1

Example 1 shows an alias that accesses only part of a variable. The
modifier is used to define a variable.

sensor VAR byte
eye VAR sensor.highnib

Sensor is a byte (8 bit) variable. Eye is defined as the high nibble (most
significant 4 bits) of Sensor. Changing the value of Eye will change only
the top 4 bits of Sensor.

Example 2

Example 2 shows the use of modifiers during execution of a program.
First, the variables are defined:

maxval VAR word
topval VAR byte

Then, at a later point in the program, the statement:

topval = maxval.highbyte

Assigns the value contained in the high 8 bits of maxval to topval. (We
could also have used maxval.byte1 to get the same value in this
example.)

Basic Atom 39

Note: when using variable modifiers, be sure to keep track of the length of
each variable as defined by its number type.

Example 3

Variable modifiers can be used in conditional statements:

if maxval.bit0 = 0 then even

Where “even” is a label. Note that if bit0 = 0 the number must be an
even number, so this test can be used to determine if a number is even
or odd.

List of Modifiers

The following modifiers are allowed. Note that in some cases different
modifiers will give the same result (for example, in a “word” variable,
“highbyte” and “byte1” are the same).

Modifier Notes
lowbit returns the low bit (least significant bit) of a variable.
highbit returns the high bit (most significant bit) of a variable.
bitn returns the “nth” bit of a variable. n can have a value of:

0 to 3 for a NIB variable
0 to 7 for a BYTE variable
0 to 15 for a WORD variable
0 to 31 for a LONG variable

lownib returns the low nibble (4 bits) of a variable
highnib returns the high nibble (4 bits) of a variable
nibn returns the “nth” nibble of a variable. n can have a value of:

0 or 1 for a BYTE variable
0 to 3 for a WORD variable
0 to 7 for a LONG variable

lowbyte returns the low byte of a variable
highbyte returns the high byte of a variable
byten returns the “nth” byte of a variable. n can have a value of:

0 or 1 for a WORD variable
0 to 3 for a LONG variable

lowword returns the low word (16 bits) of a variable.
highword returns the high word of a variable.
wordn returns the “nth” word of a long variable. n can have a

value of 0 or 1 (which are equivalent to lowword and
highword respectively).

40 Basic Atom

Pin Variables (Ports)

Pin variables are special bit-mapped variables used to set the direction
and set or read the state of any I/O pin. Pin Variables are also known as
Ports.

Direction

At program start all I/O pins are set as inputs. Directions can be set
using the Input and Output commands, or using a Pin variable from the
following list:

Variable/port bits pins
DIRS 16 P0 – P15
DIRL 8 P0 – P7
DIRH 8 P8 – P15
DIRA 4 P0 – P3
DIRB 4 P4 – P7
DIRC 4 P8 – P11
DIRD 4 P12 – P15
DIR# 1 P# (where # is a number from 0 – 31)

Each direction bit must be set to 1 for input and 0 for output.9.

State

The state of an I/O pin can be read or set using the IN and OUT pin
variables.

Note: IN and OUT are interchangeable; the two names are provided for
compatibility with other BASIC implementations and for clarity in pro-
gramming. Whether a state is set or read is determined by the direction
assigned to the pin.

The table below shows all IN and OUT Pin variables:

Variable/port bits pins
INS or OUTS 16 P0 – P15
INL or OUTL 8 P0 – P7
INH or OUTH 8 P8 – P15

9 These values apply only to the Basic Atom. The Atom Pro uses 0 for input and 1 for

output.

Basic Atom 41

Variable/port bits pins
INA or OUTA 4 P0 – P3
INB or OUTB 4 P4 – P7
INC or OUTC 4 P8 – P11
IND or OUTD 4 P12 – P15
IN# or OUT# 1 P# (where # is a number from 0 – 31)

The state bit is 0 for low and 1 for high.

Examples

As an example, let’s say we want to set P0 to P3 as inputs and P4 to P7
as outputs. Here are two different ways to accomplish the same thing.

Using 4 bit variables:

...
dira = 0 ; 0 decimal = 0000 binary
dirb = 15 ; 15 decimal = 1111 binary
...

Using an 8 bit variable:

...
dirl = 240 ; 240 decimal = 11110000 binary
...

Now we want to set and read the I/O pins we’ve set up. Let’s say we
expect the following, where 0 = low and 1 = high:

pin P0 P1 P2 P3 P4 P5 P6 P7
out 1 0 1 1
in 0 1 1 0

Using two 4 bit variables:

...
outa = 11 ; 11 decimal = 1011 binary
status = inb ; status will equal 6 decimal

; or 0110 binary
...

Note: We’ve used “out” for output and “in” for input to make it easier to
understand the program snippet. In fact, any combination of “out” and
“in” would work equally well (but could be confusing to read).

42 Basic Atom

Constants
Constants are similar to variables except that the values are set at
compile time and can’t be changed by the program while it’s running.
Think of a constant as a convenient way to give a name to a numeric
value so you don’t have to remember what it is each time it’s used.

Note: Constants are stored in program memory (see page 34), not in
RAM. This frees valuable RAM for variables as well as making constants
non-volatile. The values of constants are stored when the program is
downloaded from the IDE to the Atom.

Defining Constants

Constants are defined with the CON keyword. The numeric type is
automatically set by the compiler based on the value you enter.

Syntax

constant name CON value of constant

Examples
temperature_adjust CON 24
kilo CON 1000
true CON 1
false CON 0
endpoint CON –3442567

Constant Names

Names of constants follow the same rules as names of variables, see
page 42.

Tables

Tables are to constants as Arrays are to variables. A table can be used to
store a number of related constants which are then referred to using the
index number.

Note: Tables are stored in program memory (see page 34), not in user
RAM. This frees valuable RAM for variables and makes Tables non-volatile.

The table contents are written to program memory while the Atom is
being programmed, therefore defined constants and variables can NOT
be used to populate tables. However, the table is accessed from within a
running program, so variables can be used to "index" into a table.

Basic Atom 43

Syntax

tablename TableType data, data, data...

Table names follow the same rules as variable and constant names.

TableType can be any of the following:

! ByteTable (8 bit data)
! WordTable (16 bit data)
! LongTable (32 bit data)
! FloatTable (floating point data)

Byte Tables can also be used to store “string” values.

data is a constant, or a series of constants or constant expressions.
Variables and named constants can't be used as data because the
table is populated before your program starts running. However,
expressions such as 3 * 10 are legal.

Examples
adjust WordTable 100,350,5678,73,9,8133*3,0

creates a constant array with values as shown. Cell numbering starts with
0, so the value of “adjust(3)” would be 73. As with arrays, when referring
to the table the index can be a variable.

letter ByteTable “This is a test”,0

creates a constant array containing a string value, terminated with a
zero. In this example the value of “letter(0)” would be “T”, the value of
“letter(3)” would be “s”, etc.

Terminating the table with 0 allows you to test for the end of the table,
without knowing how many characters it contains.

Pin Constants

Pin constants are pre-defined for easy reference to I/O pins.

P0 = 0
P1 = 1
...
P15 = 15

Example

I/O pin 8 could be set to Output state and to High (5V) using either:

44 Basic Atom

high 8

or

high P8

Another example of the use of Pin constants can be found in the Traffic
Light program on page 21.

Each Atom module also has two special serial I/O pins used for
programming and serial data communications. They can be referred to
in your program as:

S_IN and S_OUT

See the appropriate data sheet to identify these pins.

Basic Atom 45

Chapter 7 - Math and Functions
As with most BASIC implementations, Atom BASIC includes a full
complement of math and comparison functions. Note, however, that
with the exception of a few special floating point functions, Atom BASIC
performs integer arithmetic, and decimal fractions are not provided for.

Integer arithmetic is used because it is faster and much more
economical of memory. It is also well suited to most control functions.
The descriptions in this chapter show some of the techniques that can
be used to deal with fractional values in an integer-only environment.

Users should remember that variables must be defined before use, and
that each definition should be of the appropriate number type (e.g. byte,
word or long) for the functions used. Most functions will work with all
variable types; exceptions are noted in the function descriptions.

Number Bases
Although all calculations are handled internally in binary, users can refer
to numbers as decimal, hexadecimal or binary, whichever is most
convenient for the programmer. For example, the number 2349 can be
referred to as:

2349 or d’2349’ decimal notation
$092D or 0x092D hexadecimal notation
%00101101 binary notation

Note: Leading zeros are not required for hex or binary numbers, but may
be used if desired.

If you’re planning to use signed integers (sbyte, sword) it’s probably a
good idea to stick to decimal notation to avoid confusion.

Math Functions
The math functions described in this section all use integer arithmetic
(unless otherwise stated).

46 Basic Atom

Out of Range Values

Warning: Out of range values can occur if the limitations of
number types (see page 34) are exceeded. The Atom BASIC
compiler does not warn the user of out of range values. It’s
your responsibility to make sure variables are appropriately
defined.

Out of range conditions can occur if, for example, executing a function
produces a result with a value greater than the target variable is capable
of storing. For example, in the following program segment:

ant var byte
bat var byte
cat var byte
bat = 12
cat = 200
ant = bat * cat ; * is the multiply function

"ant" will not have the expected value. This is because 12 x 200 = 2400,
a value too large to fit into a byte variable. To see what actually
happens, look at the numbers in binary form:

bat = 12 decimal = 1100 binary

cat = 200 decimal = 11001000 binary

bat * cat = 2400 decimal = 100101100000 binary (12 bits)

Since "ant" can’t hold a 12 bit number, the lowest 8 bits will be stored in
"ant", and the result will be a = 01100000 binary = 96 decimal, which is
incorrect. You won’t be warned of this, so take care to make sure the
target variable is large enough to handle the full range of expected
results.

Unary Functions

Unary functions have only one argument and produce one result. In the
list below, “expr” is any variable, constant or valid mathematical
expression.

Important: These functions don’t work with FLOAT numbers.10

10 See the floating point functions on page 60.

Basic Atom 47

Function Description
– expr negates the value of expr
ABS expr returns the absolute value of expr
SIN expr returns the sine of expr
COS expr returns the cosine of expr
DCD expr returns 2 to the power of expr
NCD expr returns the smallest power of 2 that is greater than expr
SQR expr returns the square root of expr
BIN2BCD expr converts expr from binary to packed BCD format
BCD2BIN expr converts expr from packed BCD to binary format
RANDOM expr returns a random number (32 bit) generated with seed

expr

– (negate)

Negates the value of the associated expression. The result will be a
signed value; the target variable should be defined as such.

Example

If temp is a signed variable, and “mark” has a value of 456, the
statement

temp = –mark

will assign the value of –456 to “temp”

SIN, COS

Since Atom BASIC deals with integers, some modifications to the usual
use of sine and cosine are made. For example, in floating point BASIC,
the expression:

ans = sin(angle)

where angle is 45 degrees, would return a value of 0.707... for ans. In
fact, the sine of an angle must always be a fractional value between -1
and 1. Atom BASIC can’t deal with fractional values, however, so we’ve
modified the use of SIN and COS to work with integers.

Because we are dealing with binary integers, we divide the circle into
256 (rather than 360) parts. This means that a right angle is expressed as

48 Basic Atom

64 units, rather than 90 degrees. Thus, working with Atom BASIC
angular units gives you a precision of about 1.4 degrees.

The result of the SIN or COS function is a signed number in the range of
–127 to +128. This number divided by 128 gives the fractional value of
SIN or COS.

Real World Example

In most “real world” applications, the angle need not be in degrees, nor
need the result be in decimal form. The following example shows a
possible use of SIN with the Atom BASIC values.

Suppose that a sensor returns the angle of a control arm as a number
from 0 to 64, where 0 is parallel and 64 is a right angle. We want to take
action based on the sine of the angle.

limit var byte
angle var byte

loop
(code that inputs the value of “angle”)
limit = sin angle
if limit > 24 then first
if limit > 48 then second
goto loop

first
code to warn of excessive angle
goto loop

second
code to shut down equipment
etc...

This will warn the operator if the arm angle exceeds approximately 8
units (11.25 degrees) and shut down the equipment if the arm angle
exceeds approximately 16 units (22.5 degrees).

Theoretical Example

Although most control examples don’t need to work in actual degrees or
decimal values of sine or cosine, this example will show how that can be
accomplished. To find the sine of a 60 degree angle, first convert the
angle to Atom BASIC units by multiplying by 256 and dividing by 360.
For example,

angle = 60 * 256 / 360

Basic Atom 49

which will give a value of 42. (It should actually be 42.667, which rounds
to 43, but with integer arithmetic the decimal fraction is ignored, and the
integer is not rounded up.)

Then find the sine of this angle:

ans = sin angle

This will give the value 109. Dividing this value by 128 will give the
decimal value of 0.851 (compared to the correct floating point value
which should be 0.866).

Note: You can’t directly get the decimal value by doing this division within
Atom BASIC (you would get a result of 0). However, you could first
multiply by 1000, then divide by 128 to get 851 as your result.

DCD

Similar to the “exp” function in some other BASIC implementations.

Example

If the value of “num” is 7, the statement

ans = dcd num

will return a value of 27, or 128. Since the returned value increases
exponentially, make sure your target variable (“result” in this case) is
correctly defined to accommodate the largest value anticipated. If the
target variable is too small, only the low order bits of the result will be
stored.

NCD

This function returns the smallest power of 2 that is greater than the
argument.

Example

If the value of “num” is 51, the statement

ans = ncd num

will return the value of 6. Since 25 = 32 and 26 = 64, 6 is the smallest
power of 2 greater than 51.

50 Basic Atom

SQR

Returns the integer portion of the square root of the argument.
Increased precision can be obtained by multiplying the argument by an
even power of 10, such as 100 or 10000.

Example 1

If the value of “num” is 64, the statement

ans = sqr num

will return the value of 8 (which is the square root of 64).

Example 2

If the value of “num” is 220, the statement

ans = sqr num

will return the value 14, which is the integer portion of 14.832..., the
square root of 220.

Example 3

If more precision is required, multiply the argument by 100 or 10000.
Again, using the example where “num” = 220:

ans = sqr (num * 100)

will return the value 148, which is 10 times the square root of 220.

Alternately,

ans = sqr (num * 10000)

will return the value 1483, which is 100 times the square root of 220.

Note: If you subsequently divide these results by 10 or 100, the precision
gained will be lost because of the integer division. You should convert the
numbers to floating point first. See page 60.

BIN2BCD, BCD2BIN

These commands let you convert back and forth between binary and
“packed” binary coded decimal (BCD). A BCD number is one in which
each decimal digit is represented by a 4 bit binary number (from 0 to 9).
Packed BCD packs two 4 bit decimal digits in a single byte of memory.

For example, the decimal number 93 is represented in binary as:

Basic Atom 51

101111 00
128 64 32 16 8 4 2 1

binary

The same number is expressed in packed BCD as:

10 111 00
8 4 2 1 8 4 2 1

0packed BCD

9 3

Example

Assuming that “ans” is a byte variable and “num” has the decimal value
of 93, the statement

ans = bin2bcd num

will set ans to a binary value of 10010011 (which is 93 in packed BCD).

Note: if you choose to interpret “ans” as a decimal number, the value will
seem to be 147 decimal, which is an incorrect interpretation of the result.

RANDOM

The RANDOM function generates a 32 bit random number (LONG)
from the seed value.

Syntax

random seed

“seed” is a variable, constant or expression having any value from 0 to
232. The seed will be treated as an unsigned number.

As with most random number generators, the random numbers
generated will follow a predictable pattern, and each time the program is
run the random number sequence will be the same. Two steps can avoid
this problem and generate a usefully random sequence of numbers;

1. Generate the original seed from, say, a timer value so that the result
will not be the same twice in succession.

2. Use the returned value as the seed for the next RANDOM
statement.

52 Basic Atom

Example

Timer 0 is always running, so we can read its value at any time to get a
pseudo-random seed number.

a var long
a = random TMR0
(code using the value of a)

loop
a = random a ; uses “a” to generate a new “a”
(code using the value of a)
goto loop

Binary Functions

Binary functions have two arguments and produce one result. In the list
below, “expr” is any variable, constant or valid mathematical expression.

Note: The word “binary” means that these functions have two arguments,
not that they are specifically designed for use with the bits of binary
numbers.

Important: These functions don’t work with FLOAT variables or
constants, with the exception of MIN and MAX.

Function Syntax Comment
+ expr1 + expr2 addition
– expr1 – expr2 subtraction
* expr1 * expr2 multiplication
** expr1 ** expr2 return high 32 bits of a multiplication *
*/ expr1 */ expr2 fractional multiplication *
/ expr1 / expr2 division *
// expr1 // expr2 mod *

MAX expr1 max expr2 returns the smaller expression *
MIN expr1 min expr2 returns the larger expression *
DIG expr1 dig expr2 returns the digit from expr1 in the position

determined by expr2 *
REV expr1 rev expr2 reverses the value of expr2 bits of expr1

starting with the LSB *
* These functions are further described in the following sections.
** is read as GET HIGH BITS

Basic Atom 53

If two long variables or constants are multiplied, the result may exceed
32 bits. Normally, the multiply function will return the least significant
(lowest) 32 bits. The ** function will, instead, return the most significant
32 bits.

You can use both functions to retrieve up to 64 bits of a multiplication,
however two long variables will be needed to store this result.

Note: The returned value does not represent the decimal digits of the
beginning of the product; it is best to work with binary or hexadecimal
when using this function.

*/ (fractional multiplication)

Fractional multiplication lets you multiply by a number with a fractional
part. The multiplier must be a long number, and it is handled in a special
fashion. The high 16 bits are the integer portion of the multiplier, the low
16 bits are the fractional part (expressed as a fraction of 65535). The
result, of course, will be an integer; any fractional part is discarded (not
rounded).

Example

Let us say we want to multiply the number 346 x 2.5. The multiplier
must be constructed as follows:

The high 16 bits will have a value of 2. We can do this with:

mult.highword = 2

The low 16 bits will have a value of half of 65535, or 32782, so:

mult.lowword = 32782

Then we do the fractional multiply:

a = 346 */ mult

which will give “a” the value 865

A similar procedure will let you multiply by any fraction; simply express
that fraction with a denominator of 65535 as closely as possible.

Note: Astute readers will notice that half of 65535 is actually 32782.5; a
number we can’t enter as the fractional part. This means that
multiplication by exactly ½ is not possible. However, the difference is so
small that it has no effect on the actual outcome of the integer result.

54 Basic Atom

/ (division)

Atom BASIC uses integer division so fractional results are discarded. For
example:

result = 76/7

will set the variable “result” to a value of 10. (The actual decimal result
should be 10.857... but the decimal part is discarded, rounding is not
done.)

// (mod)

The mod function (short for “modulo”) returns the remainder after an
integer division. So, for example, 13 modulo 5 is 3 (the remainder after
dividing 13 by 5).

The mod function can be used to determine if a number is odd or even,
as shown here:

x var word
y var word
(code that sets the value of x)
y = x//2
if y=0 goto even ;zero indicates an even number
if y=1 goto odd ;one indicates an odd number

even
(more code)

odd
(more code)

Similarly, the mod function can be used to determine if a number is
divisible by any other number.

Note: Of course there are other ways to determine if a number is odd or
even, this is just one example.

MAX

The MAX function returns the smaller of two expressions. For example:

x var word
y var word
code to set value of y
x = y max 13

will set x to the value of y or 13, whichever is smaller. Think of this as “x
equals y up to a maximum value of 13”.

Basic Atom 55

MIN

The MIN function returns the larger of two expressions. For example:

x var word
y var word
code to set value of y
x = y min 9

will set y to the value of x or 9, whichever is larger. Think of this as “x
equals y down to a minimum value of 9”.

DIG

The DIG (digit) function is used to isolate a single digit of a decimal
number. For example:

x var word
y var byte
(code to set y) ;say the result is y=17458
x = y dig 4 ;gives the 4th digit of y, which is 7

Digits are counted from the right, starting with 1. The DIG function will
work with numbers in decimal format only. If you need to find a specific
digit in a hex or binary number, use a variable modifier (see page 38).

hexadecimal

Use the “nib” modifier. Each nibble is a hexadecimal digit. Counting is
from the right starting with 0. For example, to find the 3rd hex digit of the
number “y” you could use:

x = y.nib2

(it’s nib2 because counting starts from 0, not 1).

binary

Use the “bit” modifier. Each bit is a binary digit. Counting is from the
right, starting with 0. For example, to find the 3rd bit of the binary
number “y” you could use:

x = y.bit2

REV

The REV function works directly in binary, but the results may be
expressed in any form. It is used to “reverse” the value of the low order
bits of a number (i.e. change 0’s to 1’s and vice versa). For example:

56 Basic Atom

x var byte
y var byte
x = %101110 ;this is decimal 46
y = x rev 3 ;gives g a value of %101001 or 41

Bitwise Operators

Bitwise operators are designed to work with the bits of binary numbers.
In the list below, “expr” is any variable, constant or valid mathematical
expression.

Important: These functions don’t work with FLOAT variables or
constants. Since they don’t automatically preserve the sign bit,
they should be used with caution for signed numbers.

Function Syntax Comment
& expr1 & expr2 AND the bits of the expressions
| expr1 | expr2 OR the bits of the expressions
^ expr1 ^ expr2 XOR (exclusive OR)

>> expr1 >> expr2 Shift right the bits of expr1 by expr2 places
<< expr1 << expr2 Shift left the bits of expr1 by expr2 places
~ ~ expr1 Invert the bits of expr1
! ! expr1 Invert the bits of expr1

The examples below will use 8 bit (BYTE) values for simplicity.

& (AND)

The AND function compares two values bit by bit and sets the
equivalent bit of the result to 1 if both matching bits are 1’s, to 0 if either
or both bits are 0’s. For example:

101111 00

10 111 00 0

expr1

expr2

expr1 AND expr2 10001001

Using AND for masking

One useful function for AND is to “mask” certain bits of a number. For
example, if we are interested only in the low 4 bits of a number, and

Basic Atom 57

want to ignore the high 4 bits, we could AND the number with
00001111 as shown here:

101111 00

1100

expr1

expr2 (mask)

expr1 AND expr2 1000

1100

0 0 1 1

As you can see, the high 4 bits are now all set to 0’s, regardless of their
original state, but the low 4 bits retain their original state.

| (OR)

Note: The | symbol is usually found on the same key as the backslash \..

The OR function compares two values bit by bit and sets the equivalent
bit of the result to 1 if either or both of the matching bits are 1, and to 0
if both bits are 0’s. For example:

expr1 OR expr2

101111 00

10 111 00 0

expr1

expr2

1 1111011

^ (Exclusive OR)

The Exclusive OR function compares two values bit by bit and sets the
equivalent bit of the result to 1 if either but not both of the matching bits
are 1, and to 0 otherwise. For example:

expr1 XOR expr2

101111 00

10 111 00 0

expr1

expr2

01110011

>> (Shift Right)

The Shift Right function shifts all the bits of expr1 to the right by the
number of places specified by expr2. Zeros are added to the left of the
result to fill the vacant spaces. (In some versions of BASIC this is called a
“logical shift right”). For example:

58 Basic Atom

Shift right 3

101111 00

10 100 0

expr1

expr2 0 0

0 1 0 1 10 0 0

Important: The sign bit is not preserved so this function should
not normally be used with signed numbers.

<< (Shift Left)

The Shift Left function shifts all the bits of expr1 to the left by the
number of places specified by expr2. Zeros are added to the right of the
result to fill the vacant spaces. (In some versions of BASIC this is called a
“logical shift left”). For example:

Shift left 3

101111 00

10 100 0

expr1

expr2 0 0

10111 0 0 0

Important: The sign bit is not preserved so this function should
not be used with signed numbers.

~ or ! (NOT)

The NOT function inverts the value of each bit in a number. For
example:

NOT expr1

101111 00expr1

01000101

Comparison Operators

Comparison operators let you compare the values of two expressions
for such things as conditional tests (e.g. IF...THEN).

Operator Description
= is equal to
<> is not equal to
< is less than

Basic Atom 59

Operator Description
> is greater than
<= is less than or equal to
>= is greater than or equal to

Comparisons include signed numbers, so –2 is less than +1, etc.

Logical Operators

Logical operations are used to make logical comparisons. These allow
you to set ranges for conditional tests. The following operators are
available:

Operator Description
AND Logical AND
OR Logical OR
XOR Logical Exclusive OR
NOT Logical NOT

Important: Do not confuse logical operators with similar
bitwise operators. Logical operators return a TRUE or FALSE
value that can be tested with a conditional test. They do not
operate on individual bits of an expression.

Example of Use

Logical operators link two comparisons. For example:

if (a < 100) AND (a > 10) then label

This will branch program execution to “label” if the value of a is between
11 and 99, or go on to the next step if it is outside these limits.

In the following sections, “comp” refers to a comparison test between two
expressions.

AND (logical AND)

(comp1) AND (comp2)

Returns a value of TRUE if both comp1 and comp2 are true.

60 Basic Atom

OR (logical OR)

(comp1) OR (comp2)

Returns a value of TRUE if either comp1 or comp 2 or both are true.

Example
if (a < 10) OR (a > 100) then label

This will branch program execution to “label” if the value of a is less than
10 or greater than 100, i.e. if the value of a is not between 10 and 100).

XOR (logical exclusive OR)
if (a < 50) XOR (a > 40) then label

This will branch program execution to “label” if the value of “a” is less
than 50 or if it is greater than 40, but not if it is between 41 and 49. In
other words, the branch to “label” will take place if “a” is less than 41 or
greater than 49.

NOT (logical NOT)

This unary operator works with a single argument, and returns the
reverse of its truth value. So if a comparison is TRUE, NOT(comp) will be
FALSE.

Example
if NOT(a > 20) then label

This will branch to “label” if a is not greater than 20, i.e. if a is less than
or equal to 20.

Floating Point Math
Floating point numbers are those which are capable of including decimal
fractions. They are saved internally as a mantissa (the decimal part) and
an exponent (a multiplier). For example, the number 39.456 would be
saved as 0.39456 (mantissa) x 100 (exponent).

Atom BASIC has limited floating point capability. While floating point
numbers do not work with the Unary and Binary functions discussed on
pages 46 and 52, respectively, they do work with comparisons,

Basic Atom 61

conditional tests, looping, etc. In addition, Atom BASIC provides the
following floating point functions:

Function Description
INT expr Converts a floating point number to an integer. *
FLOAT expr Converts an integer to a floating point number
FNEG expr Negates a floating point number *
exp1 FADD exp2 Adds two floating point numbers
exp1 FSUB exp2 Subtracts two floating point numbers
exp1 FMUL exp2 Multiplies two floating point numbers
exp1 FDIV exp2 Divides two floating point numbers
* These functions are further described below.

INT
x var long
y var float
(code)
x = INT y

Converts the floating point number "y" to a long integer.

Note: “x” should be a long integer for full accuracy. If “x“ is a byte or word
only the least significant 8 or 16 bits will be saved.

FNEG

The FNEG function simply changes the sign bit of a floating point
number. For example,

a = FNEG (3.123)

Will return the value –3.123 as “a”.

Floating Point Format

This description is provided for comparison with other systems that use
IEEE floating point math. It is not necessary to understand this format to
successfully use floating point numbers.

The floating point math used by the Basic Atom is similar to the IEEE 754
floating point standard with the exception of the position of the sign bit
(S).

62 Basic Atom

IEEE 754 format:

Bit 31 sign bit (S)
Bits 30 – 23 exponent (E)
Bits 22 – 0 mantissa (M)

ATOM format:

Bits 31 – 24 exponent (E)
Bit 23 sign bit (S)
Bits 22 – 0 mantissa (M)

In graphical form:

31 bits 30 - 23 bits 22 - 0

S exponent (E) mantissa (M)

bits 31 - 24 23 bits 22 - 0

exponent (E) mantissa (M)S

IEEE

ATOM

Basic Atom 63

Chapter 8 - Command Modifiers
All internal calculations in the Basic Atom are done in binary arithmetic.
On the other hand, much I/O (input/output) is done in the form of ASCII
characters. This includes such things as keyboard input, output to
displays, etc.

Atom Basic provides command modifiers to convert between numeric
values and ASCII, in a variety of formats. So, for example, the numeric
value 21 (00010101 binary) could be output as

 00010101 (binary)
%00010101 (binary with indicator)
 21 (decimal)
 15 (hexadecimal)
$15 (hex with indicator)

There is also provision for signed and floating point numbers. All of the
above are output as ASCII characters, so the number %00010101,
which is a single byte in memory, is actually output as nine ASCII
characters to the display, debugger, etc.

Modifiers can also be used to input ASCII characters and convert them
to binary numbers.

Commands that Use Modifiers
The following commands accept modifiers in their arguments. See the
listing for each individual command for details. Modifiers can be used
wherever {mods} or {modifiers} are shown in the command syntax.

Debug, debugin .. 93
Hserin, hserout ... 96
I2cin, i2cout... 107
Owin, owout .. 112
Serin, serout ... 101
Xin, xout.. 155
Lcdread, lcdwrite... 160
Readdm, writedm.. 171

The Examples in this Chapter
To avoid confusion, for the examples in this chapter we’ll use HSERIN
and HSEROUT which have the simplest syntax.

64 Basic Atom

Conventions Used in this Chapter
{ ... } represent optional components in a command. The { } are not

to be included.

[...] used for lists – the [] are required

(...) used for some arguments. The () are required

Available Modifiers
The following modifiers are available in Atom Basic:

I/O modifiers
dec decimal
hex hexadecimal
bin binary
str input or output array variables

Signed I/O modifiers
sdec signed decimal
shex signed hexadecimal
sbin signed binary

Indicated I/O modifiers
ihex hexadecimal with $
ibin binary with %

Combination I/O modifiers
ishex hex with sign and $
isbin binary with sign and %

Output-only modifiers
rep output character multiple times
real output floating point number

Input-only modifiers
waitstr waits until values match array
wait waits until values match constant string
skip skip multiple values

Basic Atom 65

I/O Modifiers (HEX, DEC, BIN)

Input

Convert input ASCII characters to a numeric value. Input must be in hex,
decimal or binary format.

Important: ASCII characters will continue to be input until an
"illegal" character is received. That character will be discarded
and will terminate input. An "illegal" character is one not
appropriate for the type of input, e.g. anything other than 0...9
for DEC, 0 or 1 for BIN, etc.

Output

Convert a numeric value to ASCII characters in hex, decimal or binary
format.

Syntax

modifier{#max} argument{\#min}

#max: optional maximum number of digits to pass
#min: optional minimum number of digits to pass

Examples - Input

If the input is 56 (in ASCII characters)

hserin [dec a]

assigns the numeric value 56 (binary 00111000) to the variable “a”.

If the input is 3456 (in ASCII characters)

hserin [dec2 a]

takes the two least significant digits (56) of the input and assigns the
numeric value 56 (binary 00111000) to the variable “a”.

Examples - Output

If the numeric value of variable “a” is 1234

hserout [dec a] ; output is 1234 in ASCII

hserout [dec2 a] ; output is 34 in ASCII

66 Basic Atom

If the value of variable “x” is 5

hserout [dec x\2] ; output is 05 in ASCII

Note: See also the Special Note re. Output Modifiers on page 71.

I/O Modifier (STR)

Input

Accept a variable number of values and store them in a variable array.
Input is in numeric format, undelimited (i.e. bytes are expected to simply
follow each other sequentially) and is not converted from ASCII.

Output

Output the elements of an array in numeric format. Output is not
converted to ASCII characters and bytes are not delimited but simply
follow each other sequentially.

Syntax

str arrayname{\length{\eol}}

length optional maximum number of values to pass
eol optional end of line (EOL) character to terminate

Examples – Input
hserin [str temp\5]

will accept the next 5 numeric input values and assign them to temp(0)...
temp(4)

hserin [str temp\100\”x”]

will accept up to 100 input values, stopping when an “x” is input, and
assign them to array “temp”. Similarly,

hserin [str temp\100\13]

will accept up to 100 input values, stopping when a carriage return
(ASCII 13) is input.

Example – Output
hserout [str temp\8]

Basic Atom 67

will output the first 8 values of the array “temp”, beginning with temp(0).
Remember that output is in numeric form, not converted to ASCII.

Note: See also the Special Note re. Output Modifiers on page 71.

Signed I/O Modifiers (SHEX, SDEC, SBIN)

Input

Convert input ASCII characters to a signed numeric value. Input must be
in hex, decimal or binary format.

Important: ASCII characters will continue to be input until an
"illegal" character is received. That character will be discarded
and will terminate input. An "illegal" character is one not
appropriate for the type of input, e.g. anything other than 0...9
for DEC, 0 or 1 for BIN, etc.

Output

Convert a signed numeric value to ASCII characters in hex, decimal or
binary format.

Syntax

modifier{#max} argument{\#min}

#max: optional maximum number of digits to pass
#min: optional minimum number of digits to pass

Examples - Input

If the input is –56 (in ASCII characters)

hserin [sdec a]

assigns the numeric value –56 to the variable “a”.

If the input is –3f (in ASCII characters)

hserin [shex a]

assigns the numeric value –56 (expressed in decimal) to the variable “a”.

Examples - Output

If the value of variable “a” is –1234 (decimal) or –4d2 (hex)

68 Basic Atom

hserout [sdec a] ; output is –1234 in ASCII

hserout [shex2 a] ; output is –D2 in ASCII

If the value of variable “x” is 5

hserout [sdec x\2] ; output is +05 in ASCII

Note: See also the Special Note re. Output Modifiers on page 71.

Indicated I/O Modifiers (IHEX, IBIN)
Indicated I/O modifiers are almost identical in both syntax and operation
to the unsigned and signed modifiers described on the previous two
pages.

Input

ASCII characters are converted to an unsigned numeric value. Input
characters are ignored until a valid indicator ($ for hex, % for binary) is
received.

Important: ASCII characters will continue to be input until an
"illegal" character is received. That character will be discarded
and will terminate input. An "illegal" character is one not
appropriate for the type of input, e.g. anything other than 0...9
for DEC, 0 or 1 for BIN, etc.

Output

An unsigned numeric value is converted to ASCII characters preceded
by an indicator ($ for hex, % for binary).

Syntax

modifier{#max} argument{\#min}

#max: optional maximum number of digits to pass
#min: optional minimum number of digits to pass

Examples – Input

If the input is $A3FC

hserin [ihex a]

will assign the numeric value $A3FC (41980 decimal) to variable “a”.

Basic Atom 69

Note that an input of “The value is $A3FC” will ignore all characters prior
to the $ and give the same result as above.

hserin [ihex2 a]

will assign the numeric value $FC (252 decimal) to variable “a”.

Examples – Output

If the numeric value of “a” is 41980 (decimal) or $A4FC (hex):

hserout [ihex a] ; output is $A4FC in ASCII

hserout [ihex2 a] ; output is $FC in ASCII

If the numeric value of “x” is 5

hserout [ibin x] ; output is %101 in ASCII

hserout [ibin x\8] ; output is %00000101 in ASCII

Note: See also the Special Note re. Output Modifiers on page 71.

Combination I/O Modifiers (ISHEX, ISBIN)
Combination I/O modifiers have the characteristics of both Indicated
and Signed modifiers, as described in the previous section.

Syntax

For syntax see the previous sections.

Examples – Input

If the input is $-3FC

hserin [ishex a]

will assign the numeric value $-3FC (-1020 decimal) to variable “a”.

Examples – Output

If the numeric value of “a” is -41980 (decimal) or $A4FC (hex):

hserout [ishex a] ; output is $-A4FC in ASCII

hserout [isbin8 a\8] ; output is $-11111100 in ASCII

(these are the low 8 bits i.e. 2 hex digits of the value).

Note: See also the Special Note re. Output Modifiers on page 71.

70 Basic Atom

Output Only Modifiers (REAL, REP)

REAL

Converts a floating point value to ASCII characters, including sign and
decimal point.

Syntax

real{#maxb} argument{\#maxa}

#maxb: optional maximum number of digits to pass before
decimal point (default 10)

#maxa: optional maximum number of digits to display after
decimal point (default 10)

Examples

If variable “y” contains the floating point value 123.45:

hserout [real y]

will send the ASCII characters 123.4500000000 to the hardware serial
port.

hserout [real2 y]

will send the ASCII characters 23.4500000000 to the hardware serial
port

hserout [real y\2]

will send the ASCII characters 123.45 to the hardware serial port.

hserout [real y\1]

will send the ASCII characters 123.4 to the hardware serial port (the
number is truncated, not rounded).

Note: See also the Special Note re. Output Modifiers on page 71.

REP

Repeats a character multiple times.

Syntax

rep argument\n

Basic Atom 71

n is the number of repetitions

Example
hserout [rep "–"\20]

will output the – character 20 times (could be used for underlining, as an
example).

Special Note re. Output Modifiers
In addition to the examples given previously in this section, output
modifiers can be used in assignment statements (e.g. a = b) to assign
decimal, hex or binary ASCII characters or strings of characters to a
variable or array.

Examples

If "x" and "y" are byte variables, and "y" contains the numeric value 8,
then:

x = hex1 y

will assign the value 56 (which is the ASCII character for the number "8")
to "x".

Important: If the numeric value would result in a 2 or more
digit ASCII number (including sign or indicator), the target
variable ("x" in the above example) should be defined as an
array.

For example,

var byte x(3)
x = dec3 y

would allow "x" to hold up to 3 decimal digits, covering all possible
values of a single byte variable. Add an extra byte to "x" if you use a
signed or indicated modifier, and two extra bytes if you use a
combination modifier. So if "y" held the hex value $-4D

var byte x(4)
x = ishex2 y

would assign the values $24, $2D, $34 and $44 to successive locations
of "x" (these are the ASCII values corresponding to $-4D).

72 Basic Atom

Using REP to Preset an Array

The REP modifier can also be used to pre-set an array to any desired
value. For example,

var byte a(20)
a = rep 0\20

will set all 20 elements of "a" to the numeric value 0 (zero). If you were,
instead, to use

var byte a(20)
a = rep "0"\20

all 20 elements of "a" would be set to the numeric value 48 (i.e. the
ASCII value of the character "0" (zero).

Input-only Modifiers (WAITSTR, WAIT, SKIP)

WAITSTR

Receives data until a continuous group matches the string contained in
an array variable.

Syntax

waitstr string\length{\eol}

string is the array to use for matching purposes
length is the number of characters to match
eol is the End Of Line character to watch for

Example

The following program excerpt will accept input from the hardware
serial port until the characters "e", "n", "d" are received in sequence, or
until an end of line (Carriage Return) character is received.

var byte x(30)
var byte y(3)
y = "end" ; this puts the ASCII characters

; e, n, and d into y(0), y(1) and
; y(2) respectively

hserin [waitstr y\3\13 x] ; 13 is the CR character

Basic Atom 73

WAIT

Receives data until a continuous group matches the string constant
included in the modifier.

WAIT is similar to WAITSTR except a string constant, rather than a pre-
defined array, is used for matching.

Syntax

wait("constant string")

Example

The following program excerpt has a similar function to that shown in
the previous section, except that an EOL test is not performed.

var byte a(30)
hserin [wait("end")] ; parentheses are required

This program will accept input data for the array "a" until the three
characters "e", "n" and "d" are received in sequence.

SKIP

Skips a specified number of input values. This is useful if your data is
preceded by a label that should not be input.

Syntax

skip count

count is the number of bytes to skip

Example

The following program excerpt inputs a two digit temperature and saves
it as a numeric value.. Actual input has the format:

temperature: nn

where nn is the two digit temperature in decimal ASCII.

var byte temp
hserin [skip 13,a] ; "temperature: " is 13

; characters long
hserin [dec2 a]

74 Basic Atom

This page intentionally left blank

Basic Atom 75

Chapter 9 - Core BASIC Commands
This chapter includes the "normal" BASIC commands that are included
with most versions of BASIC, as well as commands specific to Atom
BASIC. Read it carefully: some familiar commands may be defined
somewhat differently in Atom BASIC.

This chapter is divided into the following sections:

Assignment and Data Commands 76
Let, Clear, Lookdown, Lookup, Swap, Push, Pop, Pushw, Popw

Branching and Subroutines 79
Branch, Goto, Gosub... return, exception, If... then... else,

Looping Commands 87
For... next, Do... while, While... wend, Repeat... until

Input/Output Commands 93
Debug, Debugin, Hserin, hserout, hserstat, sethserial, i2cin, i2cout, owin,
owout, Serin, Serout, Serdetect, Shiftin, Shiftout

Miscellaneous Commands 118
End, Stop, High, Low, Toggle, Input, Output, Reverse, Setpullups, Pause,
Pauseclk, Pauseus, Sleep, nap

Conventions Used in this Chapter
{ ... } represent optional components in a command. The { } are not

to be included.

[...] used for lists – the [] are required

(...) used for some arguments. The () are required

76 Basic Atom

Assignment and Data Commands

= (LET)

Assigns the value of an expression or a variable to the target variable.

Syntax

{let} target variable = expression

expression is any valid numeric expression, variable, or constant.
The word LET is optional and may be included to improve
readability.

Note: The target variable should have a number type sufficient to store the
largest expected result of the expression. If the target variable is too small
only the lowest significant bits will be assigned. See the examples below.

Examples

If x is a byte variable, and y has the numeric value 13,

x=y*5

will assign the value 65 to variable x.

Note, however, that using the same values,

x=y*20

will assign the value 4 to variable x. This is because the actual result,
260, is too large to be stored in one byte so only the 8 lowest significant
bits are stored.

CLEAR

Sets all user RAM to zeros. This can be used to clear RAM after a reset
(so that its state will be known) or within a program to clear all variables
to zeros.

Note: Atom BASIC uses CLEAR differently from other basics.

Syntax

clear

Basic Atom 77

LOOKDOWN

Lookdown checks through items in a list of variables looking for the first
one that matches the specified criterion. The index number (beginning
with 0) of the matching list item is passed to the target variable. The scan
goes from left to right and stops as soon as the operator condition is
met.

Note: If the condition is not met, the target variable will be unchanged.

Syntax

lookdown value,{operator,} [list],target

value is the variable or constant to be compared
operator is a comparison operator (see page 58) – default is "="
list is a list of constants or variables, up to 16 bits each
target is a variable to store the resulting index value

Examples
x var byte
y var byte
x = 120
lookdown x,>,[3,10,18,36,50,66,100,130,150,200,240],y

will set y = 6

Instead of numeric constants, defined constants, variables or array
elements may be used in the list.

However, in the case of:

x var byte
y var byte
x = 120
lookdown x,=,[3,10,18,36,50,66,100,130,150,200,240],y

the condition is not met so the value of "y" will be unchanged.

LOOKUP

Uses an index number to select a value from a list. Each item in the list
corresponds to a position of 0, 1, 2, 3... etc. in the list.

Note: If the index number exceeds the number of items in the list, the
target variable will be unchanged.

78 Basic Atom

Syntax

lookup index,[list],target

index is the position (constant or variable) to be retrieved from
the list
list is a list of constants or variables, up to 16 bits each
target is a variable to store the resulting list item

Examples
temp var byte
value var byte
temp = 2
lookup temp,[10,20,30,40,50,60,70,80,90],value

will set "value" = 30 (remember that counting starts from zero).

Summary of LOOKUP and LOOKDOWN

LOOKUP is, in effect, the converse of LOOKDOWN. Lookup takes an
index and returns the corresponding value from a table, lookdown
compares a value to elements in a table, and returns the corresponding
index.

SWAP

Exchanges the values of two variables.

Note: The variables should be of the same size to prevent possible errors.

Syntax

swap variable1,variable2

Examples
ant var word
bat var word
ant = 3800
bat = 27
swap ant,bat

Now ant = 27 and bat = 3800.

Basic Atom 79

Swap eliminates the need for an intermediate variable and shortens
program length when compared with the alternative method shown
below:

ant var word
bat var word
cat var word
ant = 3800
bat = 27
let cat = ant ; now cat = 3800
let ant = bat ; now ant = 27
let bat = cat ; now bat = 3800

PUSH, POP

PUSH Stores a 32 bit value on the stack.

POP Retrieves a 32 bit value from the stack.

Important: PUSH must always be matched by a subsequent
POP instruction before any other stack-oriented commands
(e.g. GOSUB, RETURN, EXCEPTION) are used.

Syntax

push variable
pop variable

variable may be of any type. For push the value will be padded
with high order zeros to fill 32 bits if necessary. For pop the high
order bits will be truncated if necessary to fit the variable.

Variable types should be matched for predictability. While it's possible,
for example, to PUSH a long variable, and subsequently POP a word or
byte variable, it's less confusing to stick to matched types. If you POP a
word or byte variable only the low order bits will be stored.

PUSHW, POPW

PUSHW Stores a 16 bit value on the stack.

POPW Retrieves a 16 bit value from the stack.

80 Basic Atom

PUSHW (push word) and POPW (pop word) are similar to PUSH and
POP except that they deal with 16 bit, rather than 32 bit values.

Syntax

push variable

pop variable

variable may be of any type.

For push the value will be padded with high order zeros to fill
16 bits if necessary. Longer variables will be truncated (high
order bits lost) to fit 16 bits.

For pop the high order bits will be truncated if necessary to fit
the variable.

Important: PUSHW must always be matched by a subsequent
POPW instruction before any other stack-oriented commands
(e.g. GOSUB, RETURN, EXCEPTION) are used.

In theory, it's possible to PUSHW a 16 bit address, then execute a
RETURN to jump to that address, but it is not recommended since the
GOTO command is much less confusing.

Basic Atom 81

Branching and Subroutines

GOTO

Unconditionally forces program execution to jump to the supplied label.
The line following the GOTO command is not executed unless it is a
label referenced from elsewhere in the program.

Syntax

goto label

label is the label at which program execution should continue

Examples

This sample program shows one of many possible uses of the goto
command:

variables and constants defined here
start ; beginning of program

program code here
goto start ; loop back to start of program
firstsub ; beginning of subroutine section

subroutines here

BRANCH

BRANCH is an indexed form of GOTO. Branch uses an index number to
choose from a list of labels, then jumps to that label.

Syntax

branch index,[label1, label2, label3,...]

index is a variable or constant pointing within the list of labels,
with counting starting at zero.
labels are any valid labels in your program

If "index" is greater than the number of labels in the list, no jump will
occur and program execution will continue with the next line.

Examples

If the value of variable "test" is 3,

82 Basic Atom

branch test,[hot, cold, raise, lower, adjust, terminate]

will cause program execution to jump to the line labeled "lower".

GOSUB... RETURN

GOSUB stores a return address on the "stack" and jumps to the specified
label (which should be the label of a subroutine). The subroutine must
end with a RETURN command.

RETURN retrieves and removes from the stack the address stored by
GOSUB, and resumes program execution on the line following the
original GOSUB command.

Important: Subroutines should exit via the RETURN command
which clears the saved address from the stack11. If multiple exit
points are required from a subroutine, use the EXCEPTION
command described below. Do not use BRANCH or GOTO to
exit a subroutine.

Syntax

gosub label

label is the label of any valid subroutine in the program

return

Note: Atom BASIC does not provide "parameter passing" for subroutines,
nor does it provide local variables. All variables are global in scope.

Examples
val var word
weightmin var word
weightmax var word
start

code to calculate minimum weight
hserout ["Minimum "]
val = weightmin
gosub outvaldec
code to calculate maximum weight
hserout ["Maximum "]

11 If a subroutine exits without using RETURN or EXCEPTION the saved address will

remain on the stack. If such subroutines are executed many times the stack may
overflow.

Basic Atom 83

val = weightmax
gosub outvaldec

goto start
outvaldec

hserout ["weight is ",dec val," mg",13]
return

The program calculates a minimum and maximum weight (perhaps using
sensors) and displays output on a serial terminal in the format:

Minimum weight is 15 mg
Maximum weight is 32 mg

The intermediate variable val is used to pass the output value.

EXCEPTION

If multiple exit points are needed from a subroutine, all but the last
should use the EXCEPTION command. EXCEPTION differs from RETURN
as follows:

RETURN Retrieves the saved address from the stack, clears the
address from the stack, and sets program execution to
the line following the GOSUB command.

EXCEPTION Clears the return address from the stack, and resumes
program execution at the label given.

Syntax

exception label

label is the label at which program execution should continue

Examples
val var word
weightmin var word
weightmax var word
start

code to calculate minimum weight
hserout ["Minimum "]
val = weightmin
gosub outvaldec
code to calculate maximum weight
hserout ["Maximum "]
val = weightmax

84 Basic Atom

gosub outvaldec
goto start
outvaldec ; start of subroutine

if weightmin > 5 then continue
exception start ; value is too low – do again

continue
hserout ["weight is ",dec val," mg",13]

return

This program is similar to the one under GOSUB but provides an
"escape" from the subroutine if the minimum weight is too low.

IF... THEN... ELSEIF... ELSE... ENDIF

This set of commands provides conditional GOTO and/or GOSUB
capability. The IF... THEN commands can be used in two formats: simple
and extended.

Syntax – Simple Format

if comparison then label

comparison is a statement that can be evaluated as true or false,
for example x = 7, temp <> 13, etc.
label marks the program line which will be executed next if the
comparison is true

The comparison is evaluated. If it is true, program execution passes to
the line marked by the specified label. If it is false program control
continues with the next line following the IF... THEN line.

if comparison then gosub label

Behaves as above except that a GOSUB rather than a GOTO is
performed if the comparison is true.

Example
a var byte

statements to set value of a
if a > 35 then limit

statements will execute if a <= 35
limit

statements

Basic Atom 85

If a <= 35 the statements immediately following the IF... THEN line will
execute. Otherwise control will jump to the label "limit".

Syntax – Extended Format

if comparison1 then

statements (executed if comparison1 is true, then jumps to the
line following ENDIF. If false, jumps to ELSE or
ELSEIF.)

elseif comparison2 then

statements (executed if comparison 1 is false but comparison 2 is
true, then jumps to the line following ENDIF. If false,
jumps to the next ELSEIF or to ELSE.)

else

statements (executed if neither comparison1 nor comparison2 is
true)

endif

Note that elseif and else are optional. See the examples below.

Examples
ant var byte
bat var word
array var byte(20)
{code setting value of a}
if ant < 5 then

array = "small"
bat = 100

elseif ant < 10
array = "medium"
bat = 1000

else
array = "big"
bat = 10000

endif

If the first comparison (ant < 5) is true the next two statements are
executed and then program execution passes to the line following
ENDIF.

If the first comparison is false, the next two statements are skipped and
program execution passes to the "elseif" line.

86 Basic Atom

Note: Multiple "elseif" lines may be included if necessary

If the second comparison is true, the next two lines are executed and
program execution then passes to the line following ENDIF.

If the second comparison is false, the next two lines are skipped and
program execution passes to the "else" line.

The statements following the "else" line are executed until the "endif" is
reached.

ant var byte
bat var word
start

code setting value of ant
if ant < 5 then small
elseif ant < 10 then medium
endif
goto big
small

code to process small value
goto start
medium

code to process medium value
goto start
big

code to process big value
goto start

This code provides a 3 way "switch" depending on the value of "ant". The
line following "goto big" should be a label referenced from elsewhere in
the program or it will not be executed.

Basic Atom 87

Looping Commands
Looping commands repeat a number of lines (instructions) multiple
times, depending on certain conditions.

Command Repeats Condition tested
for... next defined number of times at beginning of loop
do... while until false at end of loop
while... wend until false at beginning of loop
repeat... until until true at end of loop

FOR... NEXT

Repeats the instructions between FOR and NEXT a predefined number
of times.

Syntax

for counter = startvalue to endvalue {step stepvalue}

statements to be executed

next

counter is a variable used to hold the current counter value
startvalue is the initial value of the loop counter
endvalue is the final value of the loop counter
stepvalue is the optional increment or decrement

These values may be bit, nibble, byte, word, long or float.
Startvalue, endvalue and stepvalue may be variables or constants.

If STEP is omitted a stepvalue of 1 is automatically assigned.

Stepvalue may be negative in which case the counter will be
decremented rather than incremented. The loop will continue
until the counter value falls outside the range set by endvalue.

Note: Unlike some BASICs, "next" does not have an argument in Atom
BASIC, i.e. the form "next x" is not valid.

88 Basic Atom

Take care not to modify the value of counter using statements
within the loop. This can cause unpredictable operation, and
the loop may never end.

Examples
ant var byte
bat var byte(11)
for ant = 1 to 10
bat(ant) = ant * 20
next

This simple loop will store values in the array variable "bat" as follows:

bat(0) = unchanged, bat(1) = 20, bat(2) = 40... bat(10) = 200

a var word
for a = 10 to 20 step 5
{statements}
next

The statements will be executed 3 times with a = 10, a = 15 and a = 20.
The value of "a" is incremented and tested at the end of the loop.

a var word
for a = 10 to 20 step 6
{statements}
next

The statements will be executed twice with a = 10 and a = 16.

a var sword
for a = 40 to 20 step -5
{statements}
next

The statements will be executed 5 times with a = 40, 35, 30, 25 and 20
respectively.

DO... WHILE

Repeats a set of instructions as long as a given condition remains true
(i.e. until the given condition becomes false).

The condition is tested after the instructions have been executed. The
instructions will be executed once even if the condition is initially false
(see the second example below).

Basic Atom 89

Syntax

do
 statements
while condition

condition is any valid combination of variables, constants and
logical operators.

Examples
a var word
a = 5
do

a = a * 2
hserout [dec a]

while a < 100
statements

The loop operates as follows:

Pass Output (a) Test result
1 10 true
2 20 true
3 40 true
4 80 true
5 160 false

Since the test is done at the end of the loop, the final value is output
even though it is greater than 100. Program execution continues with
the line following "while".

a var word
a = 150
do

a = a * 2
hserout [dec a]

while a < 100
statements

The loop will operate once, and output the value 300, even though the
initial value is not less than 100. This is because the test is done at the
end of the loop.

90 Basic Atom

WHILE... WEND

Repeats a set of instructions as long as a given condition remains true
(i.e. until the given condition becomes false).

The condition is tested before the instructions are been executed. If the
condition is initially false, the instructions will never be executed.

Syntax

while condition
 program statements
wend

condition is any valid combination of variables, constants and
logical operators.

Examples
a var word
a = 5
while a < 100

a = a * 2
hserout [dec a]

wend
program continues

The loop operates as follows:

Pass Initial (a) Test result Output
1 5 true 10
2 10 true 20
3 20 true 40
4 40 true 80
5 80 true 160
6 160 false none

On pass number 6 the test is false so the loop is not executed. Program
execution continues with the line following WEND. The results are
similar to the DO... UNTIL loop shown above.

The following example illustrates a difference between the DO... UNTIL
and WHILE... WEND loops.

a var word
a = 150

Basic Atom 91

while a < 100
a = a * 2
hserout [dec a]

wend
program continues

Unlike the DO... UNTIL loop, the WHILE... WEND tests before the loop
statements are executed. Since the condition is false initially, the loop is
never executed and control passes to the statements following WEND.
(Contrast this with the DO... UNTIL loop which executes once in a
similar situation.)

REPEAT... UNTIL

Repeats a set of instructions until a given condition becomes true (i.e. as
long as the condition remains false).

The condition is tested after the instructions have been executed. The
instructions will be executed once even if the condition is initially true.
REPEAT... UNTIL is essentially the converse of DO... WHILE.

Syntax

repeat
 program statements
until condition

condition is any valid combination of variables, constants and
logical operators.

Examples
a var word
a = 5
repeat

a = a * 2
hserout [dec a]

until a > 100
program continues

92 Basic Atom

The loop operates as follows:

Pass Output (a) Test result
1 10 false
2 20 false
3 40 false
4 80 false
5 160 true

Program execution then continues with the line following UNTIL.

If the initial value of a is greater than 100, the loop will be executed
once because the test is at the end of the loop.

Basic Atom 93

Input/Output Commands
Since the Basic Atom is not normally used with a computer display, the
input/output commands are highly specialized and do not duplicate
those of conventional BASICs. In place of the usual PRINT, LPRINT,
PRINT#, etc. commands, Atom BASIC provides a range of input/output
commands for various devices commonly used with microcontrollers.

Many of the I/O commands in this section accept the use of
command modifiers. See Chapter 8 - Command Modifiers on
page 63 for more information.

DEBUG

Sends output to the Debug Watch Window in the IDE.

Syntax

debug [{mod}expr1,{mod}expr2, … (mod)exprN]

mod is any valid output modifier
expr is a variable, constant or expression generating data to be
sent. The length of this list is limited only by available memory.

Notes

The debug command is useful only when your program is run in "debug"
mode from the IDE. It provides an easy way to output the values of
variables during program execution.

The debug watch window expects all output to be in ASCII characters. If
variables are output directly without modifiers, their values will be
interpreted as ASCII, which may give unexpected results. Word and long
variables will output only the low order 8 bits unless a suitable modifier
is used to convert to decimal, hex or binary.

The debug watch window accepts certain terminal commands including
(but not limited to) the following:

Character decimal value function
NUL 0 clear screen
BEL 7 ring bell
BS 8 backspace
LF 10 new line
CR 13 new line

94 Basic Atom

A more complete list will be found in the IDE documentation.

Example

We'll use the following program to test the debug command.

counter var word
cr con 13
for counter = 300 to 306
debug [dec counter,cr]
next

We first type in the program using the IDE (which must be connected to
the Basic Atom). Then click the DEBUG button. The program should
compile with no errors, and the Atom will be programmed. After this
process you'll see a screen like this one:

Now click on the RUN button:

Basic Atom 95

Your program should run and produce the following output:

After it runs, the Atom will go to sleep and stop responding. To run your
program again, simply press the RESET button on the Atom development
board.

DEBUGIN

Accepts keyboard input from the Debug Watch Window. See the
example under DEBUG which shows how to invoke this window.

Syntax

debugin [{mod}var1,{mod}var2, … (mod)varN]

var is a variable that tells DEBUGIN what to do with incoming
data. A comma delimited list or variables is supported.

The list is of the form [{mod} var1, {mod} var2... {mod} varN]
where mod is an optional input modifier and var is a variable of
the appropriate size.

Notes

In the absence of modifiers DEBUGIN assigns each keystroke to a single
variable. Program execution will wait until all variables have input; there
is no timeout with the DEBUGIN command.

See the example under HSERIN, below, for details about the use of input
modifiers, delimiting characters, etc.

96 Basic Atom

Example
counter var word
start var word
temp var byte
cr con 13
start=300
loop

debugin [temp] ; wait for any keystroke
for counter = start to start+6

debug [dec counter,cr]
next
start=counter

go to loop

In this example the DEBUGIN command is used simply to pause
program execution. The temp value is echoed to the screen, but is
otherwise ignored.

The program will output six numbers in sequence, starting with 300.
Then it will wait for any key to be pressed before displaying the next six
numbers.

Of course, DEBUGIN can be used to assign values to variables in exactly
the same way as other input commands, such as HSERIN, SERIN, etc.
The rest of this section has several helpful input examples.

HSERIN

This command accepts input via the hardware serial port. Before using
this command you must use the SETHSERIAL command (see page 100)
to set the correct baud rate. HSERIN is similar in operation to SERIN (see
page 101).

Syntax

hserin [{mod}var1,{mod}var2, … (mod)varN]

mod is any valid input modifier

var is a variable or list of variables (comma delimited) where
data will be stored.

Basic Atom 97

Example

In the following example, "illegal" characters are used as delimiters in the
input data stream.

ant var word
bat var word
cat var word
dog var word
sethserial h2400 ; 2400 baud
hserin [dec ant,bat,cat,hex dog]

Input data will be converted from ASCII decimal to numeric form and
assigned to "ant" until a non-numeric character is received. That
character will be discarded.

The next two input bytes will be assigned to "bat" and "cat" respectively.
(Each unmodified input byte is assigned to one variable.)

Following data will be converted from ASCII hex to numeric form and
assigned to "dog" until a non-hex character is received. That character
will be discarded.

For example, if the input data stream contains the following bytes
starting at the left (shown in hex and ASCII format)

hex 31 38 2C 61 62 32 44 39 2C
ASCII 1 8 , a b 2 D 9 ,

• "ant" will be assigned the numeric value 18
• the "," will terminate input for "ant" and be discarded
• "bat" will be assigned the numeric value 97 (i.e. 61 hex)
• "cat" will be assigned the numeric value 98 (i.e. 62 hex)
• "dog" will be assigned the numeric value 729 (i.e. 2D0 hex)
• the "," will terminate input for "dog" and be discarded

Example

In the following example, the input data stream must be pre-formatted
into the correct number of bytes for each variable.

ant var word
bat var word
cat var word
sethserial h2400 ; 2400 baud
hserin [dec4 ant\4, bat, hex3 cat\3]

98 Basic Atom

This format expects exactly 4 ASCII decimal digits (which will be
converted to a number and assigned to "ant"), followed by 1 numeric
byte (which will be assigned directly to "bat" with no conversion),
followed by exactly 3 ASCII hex digits (which will be converted to a
number and assigned to "cat").

HSEROUT

This command sends output to the hardware serial port. Before using
this command you must use the SETHSERIAL command (see page 100)
to set the correct baud rate. HSEROUT is similar in operation to
SEROUT (see page 103).

Syntax

hserout [{mod}exp1,{mod}exp, …{mod}expN]

mod is any valid output modifier

exp is an expression or list of expressions (comma delimited)
generating data to be sent.

Example
ant var byte
bat var byte
cat var byte
ant=65 ; hex 41
bat=99 ; hex 63
cat=66 ; hex 42
sethserial h2400 ; 2400 baud
hserout [dec ant,bat,hex4 cat\4]

The output will be the following:

hex 06 06 63 30 30 34 32
ASCII 6 5 c 0 0 4 2

Remember that "hex4 c\4" specifies that the output will be exactly 4 hex
digits.

Basic Atom 99

HSERSTAT

This command lets you check the status and/or clear the hardware serial
port buffers. Before using this command you must use the SETHSERIAL
command (see page 100) to set the correct baud rate.

Syntax

hserstat funct{,label}

funct is a value from 0 to 6 that determines the function of the
hserstat command according to the following list:

Value Function
0 Clear input buffer
1 Clear output buffer
2 Clear both buffers
3 If input data is available go to label
4 If input data is not available go to label
5 If output data is being sent go to label
6 If output data is not being sent go to label

label is an optional argument (use with values 3 – 6) that
specifies the destination jump address.

Examples

The following example will wait for input data to be available before
continuing, then input 3 bytes of data from the hardware serial port.

ant var byte
bat var byte
cat var byte
sethserial h2400 ; 2400 baud
hserstat 0 ; clear input buffer
getdata

hserstat 4,getdata ; loop if no data in buffer
hserin [ant,bat,cat] ; get 3 bytes of data

The following example will wait for all data to be sent before continuing
program execution. The variable "ant" is a 20 element array which has
been defined and populated.

100 Basic Atom

...
sethserial h2400 ; 2400 baud
for x = 0 to 19

hserout [ant(x)] ; output the array contents
next
notyet

hserstat 5,notyet ; wait until all data is sent
continue when output buffer is empty

Since data output may be slower than program execution, it may be
necessary to wait before proceeding, depending on program and
peripheral devices.

SETHSERIAL

Sets the baud rate of the hardware serial port, initializes the serial buffers
and enables the hardware serial port interrupt handler. This command
must be executed before any of hserin, hserout or hserstat are used.

Note: When using the hardware serial system the interrupts for the
hardware serial port are not available.

Syntax

sethserial baudrate

baudrate is any of the following:12

H300 H12000 H28800 H115200
H600 H14400 H31200 H250000
H1200 H19200 H33600 H312500
H2400 H21600 H36000 H625000
H4800 H24000 H38400 H1250000
H9600 H26400 H57600

Examples

See hserin, hserout and hserstat for examples.

12 The values in this list are predefined constants having the appropriate numeric

values for the respective baud rates.

Basic Atom 101

SERIN

This command receives serial input (i.e. asynchronous RS-232 data)
through a specified I/O pin.

Syntax

serin rpin{\fpin},baudmode,{plabel,}{timeout,tlabel,}[InputData]

rpin is a variable or constant that specifies the I/O pin through
which the serial data will be received. This pin will switch to
input mode and remain in that state after the end of the
instruction.

\fpin is an optional variable or constant that specifies the I/O
pin that will be used for flow control (the "\" is required). This
pin will switch to output mode and remain in that state after the
end of the instruction.

Flow control is provided for use primarily with PCs and conforms
to PC serial port standards.

baudmode is a 16 bit variable or constant that specifies serial
timing and configuration. See the description under Notes.

plabel is an optional label. The program will jump to plabel if
there is a parity error.

timeout is an optional 16 bit variable or constant that specifies
the time to wait for incoming data in milliseconds. If data does
not arrive within this time, the program will jump to tlabel.

InputData is a list of variables and modifiers that tells SERIN
what to do with incoming data. See the examples under
HSERIN (page 95) for a detailed description of this list.

Notes - Baudmode

The baudmode value is built as follows:

bit 15 14 13 12-0
function not

used for
SERIN

polarity
0 = normal
1 = inverted

data/parity
0 = 8 bits, no parity
1 = 7 bits, even parity

bit period

Note: "polarity" applies to both data and flow control.

102 Basic Atom

Programmers will not normally "build" this value themselves. The two
preferred methods are:

• Use a predefined constant from the list below, or

• Use the SERDETECT command to automatically produce the
required value as a variable.

Baudmode predefined constants

Note: You may equally well use the baudmode constant described under
SEROUT for the SERIN command. The extra letter (O) will be ignored for
SERIN.

The constants consist of 1 or 2 letters, in the order shown below,
followed by the baud rate:

N indicates "normal" data and flow control13

I indicates "inverted" data and flow control
E indicates "even parity, 7 bits", else "no parity, 8 bits"

Baud rate may be any one of 300, 1200, 2400, 4800, 9600, 14400,
19200, 28800, 33600, 38400 or 57600

Either N or I (not both) must be used as the first letter of the constant. E
is optional. If E is not used, baudmode defaults to no parity, 8 bit data.

For example, the constant "NE2400" indicates non-inverted data, 7 bits
even parity, 2400 baud. The constant "I19200" indicates inverted data, 8
bits no parity, 19,200 baud.

Note: You can confirm the syntax of your constant by checking the List of
Reserved Words on page 197.

Important: At least "N" or "I" must precede the baud rate or the
constant will simply be taken as a number, which is invalid for
this application.

Examples

This example is modified from the example given in HSERIN. See that
example for detailed explanation of the data list.

13 Note: "normal" data for RS232 uses LOW (negative) for 1 and HIGH (positive) for 0.

Basic Atom 103

ant var word
bat var word
cat var word
dog var word
serin P3\P4,NE2400,5000,expd,[dec ant,bat,cat,hex dog]
program continues here
...
expd ; jumps here if timeout
timeout processing

Serial input is on I/O pin 3, with pin 4 used for flow control. Data format
is non-inverted, even parity, 7 bits, 2400 baud. Input will wait for 5
seconds (5000 ms) between bytes, and jump to "expd" if that time is
exceeded with no data available.

SEROUT

This command sends serial output (i.e. RS232 asynchronous data)
through a specified I/O pin. SEROUT can be used in two modes: with
flow control or with timed intervals between bytes.

Note: Flow control is provided for use primarily with PCs and conforms to
PC serial port standards.

Syntax

With timed intervals:

serout tpin,baudmode,{pace,}[OutputData]

With flow control:

serout tpin\fpin,baudmode,{timeout,tlabel,}[OutputData]

rpin is a variable or constant that specifies the I/O pin through
which the serial data will be sent. This pin will switch to output
mode and remain in that state after the end of the instruction.

\fpin is an optional variable or constant that specifies the I/O
pin that will be used for flow control (the "\" is required). This
pin will switch to input mode and remain in that state after the
end of the instruction.

baudmode is a 16 bit variable or constant that specifies serial
timing and configuration. See the description under Notes.

104 Basic Atom

pace is an optional variable or constant (0 – 65535) that tells
SEROUT how many milliseconds to wait between transmitting
bytes. If pace is omitted, there will be no delay between bytes.
Flow control is preferable to fixed output timing: pace is
provided for use with peripherals that don't support flow
control. Normally either flow control or delay is used, not both.

timeout is an optional 16 bit variable or constant that specifies
flow control timeout in milliseconds. If data is halted by the
receiving device for longer than this time, the program will jump
to tlabel.

OutputData is a list of variables and modifiers that tells SEROUT
what to do with outgoing data. See the examples under
HSEROUT (page 98) for a detailed description of this list.

Notes - Baudmode

Baudmode for SEROUT is the same as baudmode for SERIN with the
exception of bit 15. The baudmode value is built as follows:

bit 15 14 13 12-0
function output

state
polarity
0 = normal
1 = inverted

data/parity
0 = 8 bits, no parity
1 = 7 bits, even parity

bit period

Note 1: If the value of "output state" is 0, the output pin will be driven for
both high and low states. If the value is 1, the output pin will be driven for
low, and open drain for high (requires external pullup).

Note 2: "polarity" applies to both data and flow control.

Programmers will not normally "build" this value themselves. The two
preferred methods are:

• Use a predefined constant from the list below, or

• Use the SERDETECT command to automatically produce the
required value as a variable (this only works with bi-directional
peripherals that can send as well as receive serial data).

Baudmode predefined constants

Note: The SEROUT baudmode constants may also be used for SERIN. The
"O", which sets bit 15, will simply be ignored for SERIN.

Basic Atom 105

The constants consist of 1, 2 or 3 letters, in the order shown below,
followed by the baud rate:

N indicates "normal" data and flow control14

I indicates "inverted" data and flow control
E indicates "even parity, 7 bits", else "no parity, 8 bits".
O indicates open drain, else both high and low are driven.

Either N or I (not both) must be used as the first letter of the constant. E
is optional. If E is not used, baudmode defaults to no parity, 8 bit data. O
is also optional, if not used both high and low states are driven.

Baud rate may be any one of 300, 1200, 2400, 4800, 9600, 14400,
19200, 28800, 33600, 38400 or 57600

For example, the constant "NE2400" indicates non-inverted data, 7 bits
even parity, 2400 baud. The constant "IO19200" indicates inverted data,
8 bits no parity, 19,200 baud, with open drain for the high state (which
is data "1" in this case).

Note: You can confirm the syntax of your constant by checking the List of
Reserved Words on page 197.

Important: At least "N" or "I" must begin the constant or it will
simply be taken as a number, which is invalid for this
application.

Examples

This example is modified from the example given in HSEROUT. See that
example for detailed explanation of the data list.

ant var byte
bat var byte
cat var byte
ant=65 ; hex 41
bat=99 ; hex 63
cat=66 ; hex 42
serout P5\P6,NEO2400,5000,expd,[dec ant,bat,hex4 cat\4]
program continues here
...
expd ; jumps here if timeout
timeout processing

Serial output is on I/O pin 5, with pin 6 used for flow control. Data
format is non-inverted, even parity, 7 bits, 2400 baud, open drain on

14 Note: "normal" data for RS232 uses LOW (negative) for 1 and HIGH (positive) for 0.

106 Basic Atom

high bits. The ATOM will wait for a maximum of 5 seconds between
bytes; if the receiving device is not ready (as determined by the flow
control pin) after that time program execution will jump to "expd".

SERDETECT

Used to auto-detect baud rates and build the "baudmode" value used
with SERIN and SEROUT

Syntax

serdetect pin,mode,var

pin is a variable or constant that specifies the I/O pin that will
be used to receive the sync character. This pin will switch to
input mode and remain in that state after the end of the
instruction.

var is a word variable used to store the resulting baudmode
value.

mode determines the setting for bits 15, 14 and 13 of the
baudmode variable (see SERIN and SEROUT for details of these
bits). For convenience, mode may use one of the following
predefined constants:

bit 15 bit 14 bit 13 constant description
0 0 0 NMODE both driven, normal, 8 bit no par
0 0 1 NEMODE both driven, normal, 7 bit even
0 1 0 IMODE both driven, inverted, 8 bit no par
0 1 1 IEMODE both driven, inverted, 7 bit even
1 0 0 NOMODE open drain, normal, 8 bit no par
1 0 1 NEOMODE open drain, normal, 7 bit even
1 1 0 IOMODE open drain, inverted, 8 bit no par
1 1 1 IEOMODE open drain, inverted, 7 bit even

Notes

SERDETECT is used to auto detect an incoming baud rate. This is ideal
for applications or peripherals that can be used at different baud rates

Basic Atom 107

since it allows software switching of the Atom. SERDETECT eliminates
the need for switches or jumpers to select baud rates.

Note: For bi-directional devices, such as a PC serial port, the value may
also be used for sending data after the detection is made.

SERDETECT works by measuring the length of one bit in the first
received character. The sending device must send one of the following
characters:

Normal data %10101010 (binary) or $AA (hex)

Inverted data %01010101 (binary) or $55 (hex)

A short delay (or suitable flow control) after this byte will allow the
SERDETECT command to be processed.

Once the time has been calculated, SERDETECT combines this with bits
15 – 13 as specified by the mode value to generate the correct value for
use in baudmode with SERIN and SEROUT.

Examples

This example is the same as that given under SERIN except that
SERDETECT is used to set baud rate.

ant var word
bat var word
cat var word
dog var word
baudset var word
serdetect P3,nemode,baudset
serin P3\P4,baudset,5000,expd,[dec ant,bat,cat,hex dog]
program continues here
...
expd ; jumps here if timeout
timeout processing

The SERDETECT command will "build" the correct value for baud rate
and parameters, and save it as "baudset", which is then used in SERIN in
place of a pre-determined baudmode parameter.

I2CIN

Receives data from an I2C device such as an EEPROM, external A/D
converter, etc.

108 Basic Atom

Syntax

i2cin DataPin,ClockPin,{ErrLabel,}Control,{Address,}[varlist]

DataPin is a variable or constant that specifies the I/O pin to use
for SDA (serial data). This pin will switch to input mode and
remain in that state after the end of the instruction.

ClockPin is a variable or constant that specifies the I/O pin to
use for SCL (serial clock). This clock is generated by the Basic
Atom. This pin will switch to output mode and remain in that
state after the end of the instruction.

ErrLabel is a label that the program will jump to if the I2CIN
command fails (e.g. the device is disconnected, turned off, etc.)

Control is a variable or constant that specifies the I2C device's
control byte. This byte is defined as follows:

bits 7 – 4 Device type. For serial EEPROMs this should be
%1010. For other I2C peripherals, refer to the
documentation of the peripheral.

bits 3 – 1 Device ID. You can address up to 8 devices on
the same I2C bus simultaneously. For example, if
the address lines (A0 – A2) of a serial EEPROM
are grounded, these bits should be %000.

bit 0 Addressing format.
0 = 8 bit addressing
1 = 16 bit addressing

Address is an optional variable or constant that specifies the
starting address to read from (default is 0). This value should be
8 or 16 bits as set by bit 0 of the Control byte (see above).

Varlist is a list of modifiers and variables that tells I2CIN what to
do with incoming data. See the examples under HSERIN (page
95) for a detailed description of this list.

Note: An EEPROM read address is automatically incremented
with each byte read.

Notes

This manual does not attempt to document or describe the I2C
protocol in any detail. Users are advised to consult available
sources for that information.

Basic Atom 109

I2C is a two-wire synchronous serial protocol used to communicate with
a variety of peripherals such as EEPROMs, A/D converters, etc. I2C is
similar to SMBus and the two may normally be used interchangeably.

I2C is a master/slave protocol with the master being able to address the
various slave devices. This allows multiple slaves to share the same bus.
Each slave must have a unique address.

In I2C applications the Basic Atom is always a Master.

Example
ant var byte
bat var byte
cat var byte
dog var byte
control var byte
address var byte
control=%10100000
address=$100
i2cin P3,P4,fail,control,address,[ant,bat,cat,hex dog]
program continues here
...
fail ; jumps here if error
error processing

This program will read 4 bytes from an EEPROM, starting at address
$100, and assign them to variables ant, bat, cat and dog. The fourth byte
is assumed to be in ASCII hex format, and will be converted to numeric
format. The other bytes are assumed to already be in numeric format.

The serial EEPROM has a device address of %000 (this is important if
there are multiple serial EEPROMS on the same I2C bus).

If communications fails for any reason (usually device not connected or
powered on) program execution will jump to the label "fail".

I2COUT

Sends data to an I2C device such as an EEPROM, external A/D
converter, etc.

110 Basic Atom

Syntax

i2cout DataPin,ClockPin,{ErrLabel,}Control,{Address,}[varlist]

DataPin is a variable or constant that specifies the I/O pin to use
for SDA (serial data). This pin will switch to output mode and
remain in that state after the end of the instruction.

ClockPin is a variable or constant that specifies the I/O pin to
use for SCL (serial clock). This clock is generated by the Basic
Atom. This pin will switch to output mode and remain in that
state after the end of the instruction.

ErrLabel is a label that the program will jump to if the I2COUT
command fails (e.g. the device is disconnected, turned off, etc.)

Control is a variable or constant that specifies the I2C device's
control byte. This byte is defined as follows:

bits 7 – 4 Device type. For serial EEPROMs this should be
%1010. For other I2C peripherals, refer to the
documentation of the peripheral.

bits 3 – 1 Device ID. You can address up to 8 devices on
the same I2C bus simultaneously. For example, if
the address lines (A0 – A2) of a serial EEPROM
are grounded, these bits should be %000.

bit 0 Addressing format.
0 = 8 bit addressing
1 = 16 bit addressing

Address is an optional variable or constant that specifies the
starting address to write to (default is 0). This value should be 8
or 16 bits as set by bit 0 of the Control byte (see above).

Varlist is a list of modifiers and variables that tells I2COUT what
data to output. See the example under HSEROUT (page 98) for
a more detailed description of this list.

Note: An EEPROM write address is automatically incremented
with each byte sent.

Notes

The I2C protocol is briefly described under Notes on page 108.

In I2C applications the Basic Atom is always a Master.

Basic Atom 111

Serial EEPROMs use an input buffer to store data before it is written,
since the writing process is typically slower than the I2C data transfer.
The size of this input buffer is specified on the EEPROM data sheet. You
must not exceed the buffer size in a single I2COUT command or data
will be lost.

Once you have output one buffer's worth of data, you must wait the
appropriate time for the data to be written before issuing another
I2COUT command. This time is specified on the EEPROM data sheet.

Refer to the EEPROM data sheet to determine buffer size and
writing time.

See the examples below for one possible implementation of this
procedure.

Example
a var byte(128)
control con %10100000
count1 var byte
count2 var byte
temp var byte
temp=0
code to populate a(0) to a(127)
for count1 = 1 to 8

for count2 = temp to temp+16
i2cout P3,P4,failed,control,[a(temp)]

next
pause 1600 ; delay to allow writing
temp = count2

next
program continues here
failed

executed if connection fails

This program first populates an array with 128 bytes of data, then writes
the data to an external serial EEPROM.

The I2C uses P3 for data, P4 for clock, and sends to an EEPROM with
device number 0, using 8 bit data. The EEPROM has a 16 byte buffer
and requires 100 ms to write each byte, or 1600 ms to empty the buffer.

The nested for... next loops output the array 16 bytes at a time, pausing
for 1600 ms between each 16 bytes. If the connection fails program
execution continues with the label "failed".

112 Basic Atom

OWIN, OWOUT

OWIN receives data from a device using the 1-wire protocol.

OWOUT sends data to a device using the 1-wire protocol.

Syntax

owin pin,mode,{NCLabel,}[varlist]

owout pin,mode,{NCLabel,}[varlist]

pin is a variable or constant that specifies the I/O pin to be used
for 1-wire data transfer. This pin will switch to the appropriate
direction and remain in that state after the end of the
instruction.

mode is a variable, constant or expression the specifies the data
transfer mode as described in the table below.

Mode Reset Byte/bit Speed
0 none byte low
1 before data byte low
2 after data byte low
3 before and after byte low
4 none bit low
5 before data bit low

Refer to your device data sheet to determine the required
settings. Data sheets can usually be found online using a
search engine.

NCLabel is a label the program will jump to if communications
fails (No Chip present).

varlist is a list of modifiers and variables that tells OWIN where
to assign received data, or OWOUT what data to output. See
the examples under HSERIN (page 95) and HSEROUT (page 98)
for more detailed descriptions of this list.

Notes

The 1-wire protocol was developed by Dallas Semiconductor. It is a 1
wire asynchronous serial protocol that does not require a clock lead (as
is the case with I2C)

Basic Atom 113

1-wire uses CMOS/TTL logic levels, open collector output. The data line
requires an external pullup to the +5V supply of the Atom. A value of
10K is suitable for short distances, 4.7K is better for longer runs. The
master initiates and controls all activities on the 1-wire bus.

In 1-wire applications the Basic Atom is always a Master.

Example:

This example shows a sample program for reading a temperature sensor
(Dallas DS1820):

See the DS1820 data sheet for further details on the commands used in
this program and for the use of the 1-wire protocol.

temp var word
convert var long
counter var byte
main
 owout P0,1,main,[$cc,$44] ;note 1
Wait
 owin P0,0,[temp] ;note 2
 if temp = 0 then wait ;note 3
 owout P0,1,main,[$cc,$be] ;note 4
 owin P0,0,[temp.byte0,temp.byte1] ;note 5
 convert = float temp fdiv 2.0 ;note 6
 debug ["Temperature = ",real convert," C",13] ;note 7
goto main

Note 1: Output is via I/O pin 0, byte mode, low speed, reset before data. $cc
(Skip ROM) sets the DS1820 to accept commands regardless of its
unique ID code, thus eliminating the need for the programmer to
know that code. $44 (Convert T) initiates the temperature
conversion and stores the result in the DS1820's scratchpad
memory.

Note 2: Input is via I/O pin 0, byte mode, low speed, no reset. Input data will
be 0 while conversion is in progress, 1 when data is ready in the
scratchpad.

Note 3: Loop waiting for input data to be ready (i.e. data = 1).

Note 4: $cc is Skip ROM, as before. $be (Read Scratchpad) tells the
DS1820 to send the two bytes from its scratchpad to the Atom.

Note 5: Reads the two bytes from the DS1820's scratchpad and stores them
in temp. Note the use of the variable modifiers byte0 and byte1 to
"build" the word variable temp.

114 Basic Atom

Note 6: Converts the temperature to floating point format. The division by 2
is required because the DS1820's output is in 0.5°C steps.

Note 7: Outputs the temperature to the debug watch window. Display is in
the form "Temperature = 35 C" followed by a new line (13).

SHIFTIN

Reads data from a synchronous serial device (also knows as shifting in
data). Unlike the previously described input commands (HSEROUT,
SEROUT, I2COUT, OWOUT), SHIFTOUT operates on a bit, rather than
a byte, basis.

Syntax

shiftin dpin,cpin,mode,[result{\bits}{result{\bits}...}]

dpin is a variable or constant that specifies the Data input pin.
This pin will switch to input mode and remain in that state after
the end of the instruction.

cpin is a variable or constant that specifies the Clock output pin.
This pin will switch to output mode and remain in that state
after the end of the instruction.

mode is a value (0 to 7) or a predefined constant that sets the
incoming data conditions according to the following table:

Constant value speed data order15 sampling
msbpre or
msbfirst*

0 normal msb first before clock

lsbpre or
lsbfirst*

1 normal lsb first before clock

msbpost 2 normal msb first after clock
lsbpost 3 normal lsb first after clock
fastmsbpre 4 fast msb first before clock
fastlsbpre 5 fast lsb first before clock
fastmsbpost 6 fast msb first after clock
fastlsbpost 7 fast lsb first after clock

* provided for backwards compatibility with previous versions.

15 MSB means "Most Significant Bit", i.e. the highest order or leftmost bit of a nibble,

byte, word or long number. LSB means "Least Significant Bit", i.e. the lowest order or
rightmost bit of a nibble, byte, word or long number.

Basic Atom 115

Fast mode runs at the highest possible speed, normal is limited
to 100 kb/s.

result is a variable where incoming data is stored. There can be
multiple variables in a list, as shown in the examples.

bits is an optional entry (1 – 32) defining the number of bits that
will be stored in each variable in the list. Default is 8 bits.

Refer to the data sheet for the peripheral device to
determine the proper settings.

Notes

In synchronous serial communication, a clock signal (running at the bit
rate) is provided by the master (the Atom is configured automatically as
the master) on a pin separate from the data signal. The remote device
uses this clock signal to set the timing for transmitting bits to the Atom.

When receiving bits, the Atom expects one bit per clock pulse. The
timing (set by the remote device) sends the bits either at the start
(before) or end (after) each clock pulse.

When connecting the peripheral device, use the following pins:

Atom Peripheral
Data output Data input
Data input Data output
Clock Clock

This form of communications is used by analog-digital converters, digital-
analog converters, clocks, memory devices and other peripherals. Trade
names include SPI and Microwire.

Example
ant var byte
bat var word
cat var long
shiftin P3,P4,msbpre,[ant,bat\16,cat\32]

This program will input 8 bits and store them in "ant", 16 bits and store
them in "bat", and 32 bits and store them in "cat". Input will be at
"normal" speed, msb first, and bits are expected at the start of clock
pulses.

116 Basic Atom

SHIFTOUT

Writes data to a synchronous serial device (also knows as shifting in
data). Unlike the previously described input commands (HSEROUT,
SEROUT, I2COUT, OWOUT), SHIFTOUT operates on a bit, rather than
a byte, basis.

Syntax

shiftout dpin,cpin,mode,[var{\bits}{var{\bits}...}]

dpin is a variable or constant that specifies the Data output pin.
This pin will switch to output mode and remain in that state
after the end of the instruction.

cpin is a variable or constant that specifies the Clock output pin.
This pin will switch to output mode and remain in that state
after the end of the instruction.

Note: Since the Atom is always the master device, the clock pin
will always be an output for both SHIFTIN and SHIFTOUT.

mode is a value (0 to 7) or a predefined constant that sets the
incoming data conditions. See the table under SHIFTIN.

var is a variable where incoming data is stored. There can be
multiple variables in a list, as shown in the example.

bits is an optional entry (1 – 32) defining the number of bits that
will be written from each variable in the list. Default is 8 bits.

Refer to the data sheet for the peripheral device to
determine the proper settings.

Notes

See the Notes under SHIFTIN.

Examples
ant var byte
bat var word
cat var long
code setting values for ant, bat, cat
shiftout P2,P4,msbpre,[ant,bat\16,cat\32]

Basic Atom 117

This program will output 8 bits from variable "ant", 16 bits from variable
"bat", and 32 bits from variable "cat". Output will be at "normal" speed,
msb first, and bits are sent at the start of clock pulses.

118 Basic Atom

Miscellaneous Commands

END, STOP

These commands stop program execution and place the Atom in low
power mode. All I/O pins will remain in their current state.

END and STOP are identical in function.

Syntax

END

STOP

Notes

To restart a stopped program, press the RESET button on the Atom or
power the Atom OFF and back ON.

HIGH, LOW, TOGGLE

HIGH configures a pin as output and sets it high.

LOW configures a pin as output and sets it low.

TOGGLE configures a pin as output and switches its state from high to
low or low to high.

Syntax

high pin

low pin

toggle pin

pin is a variable or constant that specifies the I/O pin to use.

Examples
high P4 ; makes P4 an output and sets it high (5V)

low P10 ; makes P10 an output and sets it low (0V)

high P4 ; makes P4 an output and sets it high.
toggle P4 ; switches P4 from high to low.

Basic Atom 119

INPUT, OUTPUT, REVERSE

INPUT sets a pin to be an input.

OUTPUT sets a pin to be an output but does not set its state.

REVERSE reverses the direction of a pin.

Syntax

input pin

output pin

reverse pin

pin is a variable or constant specifying the I/O pin affected.

Notes

These commands let you set the direction of a pin. Note that several
commands (e.g. high, low, etc. automatically set the direction of certain
pins so it may not be necessary to set them using input, output or
reverse. This behavior is documented for the individual commands.

Examples
input P8 ; sets I/O pin 8 as an input.

output P9 ; sets I/O pin 9 as an output

serout P5\P6,NEO2400,5000,expd,[dec ant,bat,hex4 cat\4]
program continues here
input P5 ; change P5 to an input

In the last example, the serout command has set P5 to an output. Later,
the input command is used to change it to an input.

SETPULLUPS

Enables or disables the internal pull up resistors.

Syntax

setpullups mode

120 Basic Atom

mode specifies the state of the internal pullups. PU_OFF disables
pullups, PU_ON enables pullups.

Notes:

Pullup resistors are connected to +5V. If pullups are enabled, both high
and low states are driven by the Atom. If pullups are disabled, the high
state is open drain. In this case an external pullup (perhaps part of a
peripheral device) must be used.

Open drain operation can allow several devices to be connected
together. Only the one device that goes "low" will affect the status of the
line, the other devices remain in the "open" state and don't affect each
other.

Examples
setpullup pu_on ; enables internal pullups

setpullup pu_off ; disables internal pullups

PAUSE

Pause execution for a specified number of milliseconds.

Syntax

pause milliseconds

milliseconds is a variable or constant specifying the number of
milliseconds (up to 32 bits, or 4,294,967,295 ms).

Notes

Pause is used to delay program execution. The duration of the pause can
be from 1 ms to 4,294,967 seconds (which is approximately 1193 hours,
or 49.7 days).

While it is unlikely that longer pauses than this will be required, times
shorter than 1 ms may be obtained with the pauseus and pauseclk
commands.

Examples

See the traffic light program on page 21 for one example where pause
could be used. Another example is shown under I2COUT on page 111.

Basic Atom 121

PAUSECLK

Pause execution for a specified number of clock cycles.

Syntax

pauseclk cycles

cycles is a variable or constant (up to 32 bits) specifying the
number of clock cycles to pause.

Notes

The Atom uses a 20 MHz crystal to generate its clock signal. The actual
clock used by the Atom's microcontroller chip is ¼ the rate of the crystal
generator, or 5.0 MHz. This means that the clock period is 1/5 µs, or
200 ns.

The pauseclk command can therefore be used to generate delays from
200 ns to approximately 859 seconds, or 14.3 minutes.

Examples
pauseclk 2000

will cause program execution to pause for 2000 x 200 ns, or 400 µs.

PAUSEUS

Pause execution for a specified number of microseconds.

Syntax

pauseus microseconds

microseconds is a variable or constant specifying the number of
microseconds to pause, up to 32 bits.

Notes

The pauseus command is used to pause program execution for short
periods of time (from 1 µs to 4,294,967,295 µs, which is approximately
4,295 seconds, or 71.6 minutes, or 1.2 hours).

The resolution of the pauseus command is 1000 times smaller than that
of the pause command and 5 times greater than the pauseclk command.

122 Basic Atom

NAP

The NAP command executes the processor's internal sleep mode for the
specified time period. Power consumption is reduced to about 50 µA if
no outputs are being driven high.

Syntax

nap period

period is a variable or constant that determines the duration of
the reduced power nap according to the following formula:

duration = 2 period x 18 ms

Period can range from 0 to 7, which gives the following nap
times:

Period 2 period Nap time
0 1 18 ms
1 2 36 ms
2 4 72 ms
3 8 144 ms
4 16 288 ms
5 32 576 ms
6 64 1152 ms (1.152 s)
7 128 2304 ms (2.304 s)

Notes

Times are approximate and may vary with temperature, supply voltage
and manufacturing tolerances.

The nap command uses the Atom's internal sleep timer (watchdog
timer). The maximum nap time is 2.304 seconds. For longer periods use
the SLEEP command instead.

The Atom will immediately wake up from a nap if an interrupt occurs.

The NAP command does not affect internal registers so your program
will continue executing when the time expires.

Example
nap 3

will put the Atom in low power sleep state for 144 milliseconds

Basic Atom 123

SLEEP

The SLEEP command is similar to the NAP command except that it can
be used for longer time periods. To achieve minimum power
consumption set all I/O pins to output and in the low state.

Syntax

sleep seconds

seconds is a variable or constant (up to 16 bits) that specifies
the duration of the sleep in seconds.

Notes

The SLEEP command operates by simply looping the internal sleep timer
as many times as required to achieve the desired time interval. In other
words, it is similar to executing the NAP command multiple times.

The internal sleep timer is set to a value of 64, which gives an
approximate time of 64 x 18 ms or 1.152 seconds for each execution.
Note that the Atom will wake up briefly each time the timer loops, i.e.
every 1.152 seconds.

As with NAP, an interrupt will terminate the current cycle of the internal
sleep timer. However, the SLEEP command will simply resume execution
with the next scheduled cycle, so interrupts will only have a slight effect
on the overall time.

The SLEEP command does not affect internal registers so your program
will continue executing when the time expires.

Example
sleep 60

will put the Atom in low power sleep state for approximately 1 minute.

124 Basic Atom

This page intentionally left blank

Basic Atom 125

Chapter 10 - Specialized I/O Commands
This chapter includes specialized input/output commands such as those
for A/D conversions, generating audio tones, controlling LCD displays,
stepper motors, household control systems, etc.

Waveform I/O Commands 126
DTMFout, DTMFout2, Freqout, HPWM, PWM, Pulsout, Pulsin, Sound,
Sound2, Sound8

Special I/O Commands 142
Adin, Button, Count, , RCTime, Servo, Spmotor

X-10 Commands 154
Xin, Xout

LCD Commands 159
LCDinit, LCDread, LCDwrite

Video 164
Enablevideo

Conventions Used in this Chapter
{ ... } represent optional components in a command. The { } are not

to be included.

[...] used for lists – the [] are required

(...) used for some arguments. The () are required

Several of the commands described in this chapter specifically
address hardware features of the microcontroller chip.
Descriptions of these hardware features are beyond the scope
of this manual.

Please refer to the PIC16F87X data sheet, available at
http://www.microchip.com for further details..

126 Basic Atom

Waveform I/O Commands

DTMFOUT

Outputs a two frequency DTMF tone on a single pin of the Atom. This
tone can be used for dialing a telephone or operating remote devices
with DTMF decoders.

Syntax

dtmfout pin,{ontime,offtime,}[tone1, tone2, ... toneN]

pin is a variable or constant that specifies the I/O pin to use.
The pin will be set to an output during tone generation. After
tone generation is complete the pin will be set to an input.

ontime is an optional variable or constant (0 – 65535) that
specifies the duration of each tone in milliseconds. If not
specified, default is 200 ms.

offtime is an optional variable or constatnt (0 – 65535) that
specifies the length of silence after each tone in milliseconds. If
not specified, default is 50 ms.

tone1 – toneN is a list of tones to be generated in the form of
variables or constants defined by the list below:

Tone value DTMF pair
0 to 9 0 to 9
10 *
11 #
12 to 15 fourth column tones A to D

Notes

DTMF tones consist of two sine waves at different frequencies.

1209Hz 1336Hz 1477Hz 1633Hz
697Hz 1 2 3 A
770Hz 4 5 6 B
852Hz 7 8 9 C
941Hz * 0 # D

Basic Atom 127

The DTMFOUT command causes the Atom to create and mix two sine
waves mathematically, then use the resulting data stream to control the
duty cycle of a pulse width modulator (PWM). The resulting output must
be filtered to remove the digitization "noise" and produce reasonable
sine waves.

Note: The DTMFOUT2 command requires less complex filtering and is
recommended if you have an extra I/O pin available.

The simplest circuit uses a resistor and capacitor as a low pass filter
(shown connected to P1 in the diagram). Depending on the DTMF
decoder used, this simple filter may be sufficient – it is not
recommended for use with the PSTN (public switched telephone
network). You may need to adjust the capacitor value for best results.

Design of more sophisticated filters, if required, is beyond the
scope of this manual.

390 ohm

0.5 uF

P1 output

Figure 13 - Simple Low Pass Filter

Examples
dtmfout p1,100,50,[2,3,3,5,5,5,5]

This command will generate the DTMF pairs required to dial the number
233-5555 using 100 ms tones with 50 ms silent spaces between them.

DTMFOUT2

Outputs a two frequency DTMF tone on two pins of the Atom, one
frequency per pin. This tone can be used for dialing a telephone or
operating remote devices with DTMF decoders.

Syntax

dtmfout2 pin1\pin2,{ontime,offtime,}[tone1, tone2, ... toneN]

128 Basic Atom

pin1\pin2 are variables or constants that specifies the two I/O
pins to use. The pins will be set to outputs during tone
generation. After tone generation is complete the pins will be
set to inputs.

ontime is an optional variable or constant (0 – 65535) that
specifies the duration of each tone in milliseconds. If not
specified, default is 200 ms.

offtime is an optional variable or constant (0 – 65535) that
specifies the length of silence after each tone in milliseconds. If
not specified, default is 50 ms.

tone1 – toneN is a list of tones to be generated in the form of
variables or constants defined by the list below:

Tone value DTMF pair
0 to 9 0 to 9
10 *
11 #
12 to 15 fourth column tones A to D

Notes

DTMF tones consist of two sine waves at different frequencies.

1209Hz 1336Hz 1477Hz 1633Hz
697Hz 1 2 3 A
770Hz 4 5 6 B
852Hz 7 8 9 C
941Hz * 0 # D

The DTMFOUT2 command causes the Atom to create two square
waves, one at each of the required frequencies, and send them out on
their respective pins. Filtering is required to create a reasonable
approximation of sine waves, however the square waves have much less
high frequency noise than the PWM tones generated by DTMFOUT and
require less sophisticated filtering. The diagram assumes that the tones
are generated on P1 and P2.

The capacitor value may require adjustment for best results. This circuit
should work well on the PSTN if levels are correctly set.

Basic Atom 129

390 ohm

0.2 uF

P1

output P2

390 ohm

Figure 14 - Filter/combiner for DTMFOUT2

Examples
dtmfout2 p1\p2,100,50,[2,3,3,5,5,5,5]

This command will generate the DTMF pairs required to dial the number
233-5555 using 100 ms tones with 50 ms silent spaces between them.
Output is on I/O pins P1 and P2 and should be combined using a circuit
similar to that shown above.

FREQOUT

This command generates one or two tones that are output on a single
I/O pin.16 FREQOUT generates a pulse width modulated signal.

Syntax

freqout pin, duration, freq1{,freq2}

pin is a variable or constant that specifies the I/O pin to be
used. This pin will be set to output mode during tone generation
and left in that state after output is completed.

duration is a variable or constant that sets the duration of the
output tone in milliseconds (0 – 65535).

freq1 is a variable or constant that specifies the frequency in Hz
of the first tone (0 – 32767).

16 FREQOUT generates a pulse width modulated signal designed to be filtered to

create a sine wave. You may prefer to use one of the SOUND commands, which
generate a square wave, if a single tone requiring less filtering is desired.

130 Basic Atom

freq2 is an optional variable or constant that specifies the
frequency in Hz of the second tone (0 – 32767).

Notes

The tone (or tones) is generated mathematically in the Atom and output
as a pulse width modulated (PWM) signal. The signal must be converted
to a sine wave (or a pair of sine waves) by passing it through an
integrator (low pass filter).

For non-critical applications, a simple filter such as the one shown below
may suffice. You may need to experiment with the resistor and/or
capacitor value for best results at the frequency you are using.

Design of more sophisticated filter circuits is beyond the scope
of this manual.

390 ohm

0.5 uF

P1 output

Figure 15 - Simple integrator/low pass filter

Examples
freq var word
dur var word
freq = 1000
dur = 5000
freqout p1, dur, freq

This will output a 1000 Hz tone for a duration of 5 seconds on Pin 1.

HPWM

This command gives access to the Atom’s built-in hardware PWM
generators. It allows you to output a PWM signal with any desired
period and duty cycle (within the limits of the hardware).

Basic Atom 131

A detailed description of the operation of this hardware is
beyond the scope of this manual. Please refer to the
PIC16F87X data sheet (see page 125 for availability).

Syntax

hpwm select, period, duty

select is a constant or variable with a value of 0 or 1 as shown in
the table below.

select PIC module Atom output pin
0 CCP1 10
1 CCP2 9

period is a constant or variable (1 – 16384) that specifies the
period of the output signal in microseconds.

duty is a constant or variable (1 – 16384) that specifies the duty
of the output signal in microseconds

Note: duty must be less than period for this command to work
properly.

Notes

The HPWM command uses either of the Atom's CCP (Capture,
Compare, PWM) modules to generate a square wave signal with a
definable duty cycle. As shown in the table above, setting select to a
value of 0 will use module CCP1, a value of 1 will use module CCP2.
These modules are mapped to pins 10 and 9, respectively, of the Atom
module.

Note: CCP1 and CCP2 may be used simultaneously and independently in
your program.

Once the HPWM command has executed, the PWM signal will be
output continuously until cancelled, while the rest of your program will
continue to execute.

To cancel the PWM signal, simply set the appropriate control register to
a value of 0, using the pre-defined variables ccp1con or ccp2con, as
shown in the example below.

132 Basic Atom

CCP1 and CCP2 are also used for Compare and Capture
operations. Each can only be used for one function at a time.

Examples
select con 1 ; 1 uses CCP2 on pin 9
period var word
duty var word
period=100 ; 1000 us period
duty=25 ; 25% duty cycle
main

hpwm select, period, duty
pause 5000 ; wait 5 seconds
ccp2con=0 ; turn off output
pause 5000 ; wait 5 seconds

goto main ; repeat

This program generates a square wave of period 100 microseconds
(frequency of 10,000 Hz) with a duty cycle of 25%. Output is on the
Atom module's pin 9. The signal will continue for 5 seconds, then be
turned off (by setting register ccp2con to zero). After a further 5
seconds, the program will repeat.

PWM

The PWM command is used to generate an analog voltage from a digital
calculation.

Syntax

pwm pin, duty, duration

pin is a variable or constant that specifies the Atom I/O pin to
use. This pin will be set to output during pulse generation.

duty is a variable or constant (0 – 255) that sets the duty cycle
from 0% (0) to 100% (255).

duration is a variable or constant (0 – 65535) that sets the
approximate duration of output in milliseconds.

Notes

The PWM command generates a pulse width modulated signal with a
specified duty cycle. Note that the frequency of the pwm signal is not

Basic Atom 133

fixed and varies with the duty cycle, therefore the primary use for this
command is to produce a signal to be filtered for analog output.

The output of the PWM command must be integrated (using a low pass
filter) to produce an analog voltage. A circuit such as the one shown
below will suffice for most uses.

0.1 uF

P1 output
100k

1 meg

R S

R L

Figure 16 - Analog converter for PWM command

The values of capacitor, series resistor (RS) and load resistor (RL) may be
varied to produce the desired output voltage and response time. The
values shown produce adequate filtering. Note that response time is
relatively slow, and the PWM command with a filter such as this is
mainly suitable for producing steady-state voltages rather than rapidly
varying waveforms.

The values shown will produce a voltage that varies linearly from 0V
(with duty set to 0) to approximately 4.6V (with duty set to 255). The
frequency of the pwm signal is approximately 125 kHz with duty set to
128 (50%) and drops significantly at both higher and lower duty cycles.

Examples
duty var byte
duration var word
duration=5000
main

duty=0
gosub generate
duty=64
gosub generate
duty=128
gosub generate
duty=192
gosub generate
duty=255
gosub generate

goto main
generate

134 Basic Atom

pwm p1, duty, duration
return

With a filter such as that shown above, this program will generate, in
sequence, voltages of 0V, 1.15V, 2.3V, 3.45V and 4.6V for 5 seconds
each, then repeat the same cycle indefinitely. (All voltages are
approximate.)

PULSOUT

Generates a pulse on the specified pin. A "0" or "1" pulse will be
generated, depending on the initial state of the pin.

Syntax

pulsout pin, time

pin is a variable or constant that specifies the I/O pin to use.
This pin will be placed in output mode immediately before the
pulse, and left in that mode after the instruction finishes.

time is a variable or constant (4 – 65535) that specifies the
duration of the pulse in microseconds.

Notes

PULSOUT toggles the pin's high/low state twice to generate a pulse.
You can use the high or low commands to set the initial state of the pin,
which controls the polarity of the pulse.

Once the pulse is issued, the pin will remain in the final state (which is
the same as its initial state prior to the PULSOUT command) until further
commands affect that pin. Thus, successive use of the PULSOUT
command will produce successive pulses of the same polarity.

Examples
time var word
time=12
low p0 ; set pin0 to output, low state
pulsout p0, time ; generate a "high" pulse
program continues

This program will produce a pulse similar to that shown on the left in
Figure 17. If the "low p0" command is replaced by "high p0" the pulse
will be similar to that shown on the right in Figure 17.

Basic Atom 135

4 us per division

Initial state 0 Initial state 1

4 us per division

5V

4V

3V

2V

1V

0V

5V

4V

3V

2V

1V

0V

Figure 17 - Output of "pulsout" command

PULSIN

Measures the duration of an input pulse on a specified pin.

Syntax

pulsin pin, direction, {TimeoutLabel, TimeoutMultiplier,} duration

pin is a variable or constant that specifies the pin to be used for
the input pulse. This pin will be placed into input mode during
the execution of this command and left in that state after the
command finishes.

direction is a variable or constant (0 or 1) that specifies the
pulse direction. If state = 0, the pulse must begin with a 1-to-0
transition. If state = 1 the pulse must begin with a 0-to-1
transition.

TimeoutLabel is an optional label that specifies the target if a
timeout occurs. If the command times out before a pulse is
detected, program execution will continue at this label. The
default timeout value is 65535 µs. If no TimeoutLabel is
specified, PULSIN will wait 65535 µs for a pulse to occur, then
program execution will continue with the next instruction.

TimeoutMultiplier is a variable or constant that specifies the
multiplier to be used for the default 65536 µs timeout. a

136 Basic Atom

multiplier for the default 65535 µs timeout. For example, if
timeoutmultiplier = 10, the timeout will be 655350 µs or 0.655
seconds. TimeoutMultiplier is required if TimeoutLabel is
specified.

duration is a variable that stores the pulse duration in µs. Make
sure the variable is large enough to store the longest expected
pulse time (either 65535 µs or that set by TimeoutMultiplier). If
the variable is too small only the least significant bits will be
stored. If no pulse is detected within the timeout value duration
will be set to 0.

Notes

These illustrations will show the results of the PULSIN instruction in
several situations.

Pin is initially high, and a low pulse occurs:

initial state

 if direction = 0 timing
 will start here and
 pulse will be measured

if direction = 1 timing will start
here and instruction will time out

Pin is initially low, and a high pulse occurs:

initial state

 if direction = 1 timing
 will start here and
 pulse will be measured

if direction = 0 timing will start
here and instruction will time out

Basic Atom 137

Pin is initially high, and a low pulse, followed by a high pulse,
occurs:

 if direction = 0 timing
 will start here and first
 pulse will be measured

 if direction = 1 timing
 will start here and second
 pulse will be measured

Examples
pulsin p0,0,duration

will wait up to 65535 µs for a "low" pulse (i.e. a pulse starting with a
falling edge) and measure its duration, saving the result in duration, then
program execution will continue with the next instruction.

If there is no pulse within 65535 µs program execution will continue
with the next instruction, and duration will be set to 0.

Note: If a "high" pulse occurs, timing will start at the end of the pulse, and
PULSIN will time out.

pulsin p0,1,timeout,100,duration

will wait up to 6553500 µs (approx. 6.5 seconds) for a "high" pulse (i.e. a
pulse starting with a rising edge) and measure its duration, saving the
result in duration, then program execution will continue with the next
instruction. Duration must be large enough to store a value up to
6553500.

If there is no pulse within 6553500 µs, program execution will jump to
the label timeout and duration will be set to 0.

Note: If a "low" pulse occurs, timing will start at the end of the pulse, and
PULSIN will time out, jumping to label timeout.

138 Basic Atom

SOUND

Generates an audio tone or a sequence of tones on a specified I/O
pin.17 SOUND generates a square wave.

Syntax

sound pin,[dur1\note1, dur2\note2, ... durN\noteN]

pin is a variable or constant specifying the output pin to use.
This pin will be set to output mode during tone generation and
will remain in that mode after the instruction is completed.

dur is a constant or variable (or a number of constants or
variables) that specify the duration, in milliseconds (1 – 65535)
of each tone.

note is a constant or variable (or a number of constants or
variables) that specify the frequency in Hz (1 – 32767) of each
tone to be generated.

Notes

The SOUND command generates a square wave output. If you are using
it to drive a small speaker or amplifier no filtering may be needed.
However, a low pass filter is recommended to convert the square wave
to something resembling a sine wave.

A simple RC filter, such as that shown in Figure 15, can be used to
approximate a sine wave. You may need to adjust the capacitor value
for best results with the frequencies you are using.

Since a square wave contains all odd harmonics of the fundamental
signal, the best filter would have a sharp cutoff at less that 3 times the
frequency of the tones used. The design of such a filter is beyond the
scope of this manual.

17 If only a single tone is needed, you may prefer to use the FREQOUT instruction

which generates a pulse width modulated signal designed to be filtered to create a
sine wave.

Basic Atom 139

Examples
note1 con 1000
note2 con 2000
note3 con 3000
dur con 1000
sound p1,[dur\note1,dur\note2,dur\note3]

will produce tones of 1000, 2000 and 3000 Hz in sequence, lasting 1
second each.

SOUND2

Generates two simultaneous tones, or a sequence of such tones, on two
specified output pins. The tones generated are square waves.

Syntax

sound2 pin1\pin2,[dur1\note1\noteA,dur2\note2\noteB,...
durN\note#\noteN]

pin1 and pin2 are constants or variables specifying the two
output pins to be used, one for each tone.

dur is a constant or variable (or sequence of constants or
variables) specifying the duration in milliseconds (1 – 65535) of
each note pair. Both notes last the same duration in each case.

note1 to note# are constants or variables specifying the
frequencies in Hz (0 – 16000) of the notes to be output on
pin1.

noteA to noteN are constants or variables specifying the
frequencies in Hz (0 – 16000) of the notes to be output on
pin2.

Notes

The SOUND2 command generates square wave output on each of the
two pins. If you are using it to drive a small speaker or amplifier no
filtering may be needed. The pins can be connected together as shown
on the left in Figure 18. However, a low pass filter is recommended to
convert the square wave to something resembling a sine wave, as shown
on the right in Figure 18. You may need to adjust the capacitor value for
best results.

140 Basic Atom

390 ohm

0.2 uF

P1

output P2

390 ohm

390 ohm

P1

output P2

390 ohm

Figure 18 - Combining outputs for Sound2

Since a square wave contains all odd harmonics of the fundamental
signal, the best filter would have a sharp cutoff at less that 3 times the
frequency of the tones used. The design of such a filter is beyond the
scope of this manual.

Examples
note1 con 1000
noteA con 1500
note2 con 1800
noteB con 2700
dur con 1000
sound2 p1\p2,[dur\note1\noteA,dur\note2\noteB]

This will output the frequency pair 1000/1500 Hz for 1 second, followed
by the pair 1800/2700 Hz for 1 further second, on pins 1 and 2
respectively.

SOUND8

Generates up to eight simultaneous tones, or a sequence of such tones,
on eight specified output pins. The tones generated are square waves.

Syntax

sound8 port,[dur1\notelist1{,dur2\notelist2{,… durN\notelistN}}]

port is a variable or constant that specifies the I/O port to use
(see page 40). Each port specifies 8 pins, as shown in the table:

Port pins
inl or outl p0 – p7
inh or outh p8 – p15

Basic Atom 141

All pins on the selected port will be set to outputs for tone
generation and will be left in that mode after the instruction is
finished.

dur is a variable or constant defining the duration of each set of
8 tones in milliseconds (1 – 65535). All 8 tones in a set have the
same duration. A new duration is specified for each set of 8
tones in a sequence.

notelist is a set of up to 8 variables or constants defining
frequencies to be generated, one per output pin. The notelist is
of the form note1{\note2{\note3{\… note8}}}. If fewer than 8
notes are included, they will be output on the lowest numbered
pins of the port and the undefined pins will remain "silent".

Each note is a variable or constant that specifies the frequency
of the note in Hz (1 – 16000).

Notes

The SOUND8 command generates square wave output on each of the
eight pins. If you are using it to drive a small speaker or amplifier no
filtering may be needed. The pins can be connected together as shown
on the left in Figure 19. However, a low pass filter is recommended to
convert the square wave to something resembling a sine wave, as shown
on the right in Figure 19. You may need to adjust the capacitor value for
best results.

output

390 ohm
P1
P2
P3
P4
P5
P6
P7
P8

output

390 ohm
P1
P2
P3
P4
P5
P6
P7
P8

0.2 uF

Figure 19 - Combining outputs for SOUND8

Since a square wave contains all odd harmonics of the fundamental
signal, the best filter would have a sharp cutoff at less that 3 times the
frequency of the tones used. The design of such a filter is beyond the
scope of this manual.

142 Basic Atom

Example
dur1 con 2
dur2 con 1
nA con 440
nB con 494
nC con 523
nD con 587
nE con 659
nF con 698
nG con 784
nA2 con 880
sound8 outl,[dur1\nc\ne\ng,dur2\nf\na\nc\a2]

This program first defines nA – nA2 as the musical notes (equal
tempered scale) A, B, C… A2 respectively. Then it plays the chord C-E-G
for 2 seconds (on pins P0 to P2), followed by the chord F-A-C-A2 for one
second (on pins P0 to P3). The remaining pins on the port remain silent.
Of course, flats and sharps can also be defined; a quick internet search
will give you the frequencies you need.

Special I/O Commands

ADIN

Sets up the hardware A/D converter and stores the resulting value in a
variable. The resolution is 10 bits.

The ADIN command uses the microcontroller's built-in A/D
hardware. A description of this hardware is beyond the scope
of this manual. Please refer to the PIC16F87X data sheet (see
page 125)

Syntax

adin pin,clk,adsetup,var

pin is a constant or variable specifying the analog pin to use for
the A/D input. Available pins are AX0, AX1, AX2 (28 and 40 pin
Atom only) and AX3.

Note: On the 24 pin Atom, these pins are implemented as 4
solder pads on the bottom side. On the 24 pin Atom, AX2 is not
available for analog use. See the Atom 24 Pin Module data sheet.

Basic Atom 143

clk is a constant or variable that sets the sampling time for the
A/D conversion.18 Choose one of the following values:

clk value clock actual speed
0 fast oscillator/2
1 medium oscillator/8
2 slow oscillator/32
3 based on internal R/C oscillator

adsetup is a constant or variable that sets the options for the
A/D hardware. Pre-defined constants are available for the
following selections:

AD_LON left justified, 6 LSB set to '0'
AD_LPOS left justified, positive voltage reference
AD_LNEG left justified, negative voltage reference
AD_RON right justified, 6 MSB set to '0'
AD_RPOS right justified, positive voltage reference
AD_RNEG right justified, negative voltage reference

var is a variable (word or long) that stores the returned value
from the conversion (10 bit resolution).

Notes

The ADIN command converts an analog (0 – 5V) signal to a digital value
from 0 – 1023. The input can be scaled by using a reference voltage
(Vref).

A voltage reference may be applied to AX3 to scale the input. To do this,
use the AD_RPOS parameter. If a voltage of 2.5 volts is applied to AX3,

18 This value sets bits 7 and 6 of the ADCON0 register of the PIC microcontroller. See

the PIC16F87X data sheet.

144 Basic Atom

the input (on AX0, AX1 or AX2 (28 or 40 pin only)) is scaled so that 0 –
2.5V results in an output of 0 – 1023. This doubles the resolution for low
voltages.

Voltage reference may be from 1V to 5V, and must be applied to AX3.

Examples
volts var word
adin ax0,1,ad_ron

will convert an input voltage (0 – 5V) on pin AX0 to a digital value of 0 –
1023 and store the result, right justified, in word variable "volts". The first
6 bits of "volts" will be zeros. A medium sampling rate (oscillator/8) is
used.

BUTTON

Processes a momentary switch contact, such as a button press. Includes
debouncing and auto-repeat. The BUTTON command should be used in
a program loop so that it is repeatedly accessed.

Note that all timing (except debounce) for the BUTTON command is set
by counting program loops, so some experimentation may be required to
find the best values.

Syntax

button pin, downstate, delay, rate, loopcounter, targetstate, target

pin is a variable or constant the specifies the I/O pin to be used.
Pin will be set to an input automatically.

downstate is a variable or constant (value either 0 or 1) that
specifies the logical state of the pin when the button is pressed.
0 = low, 1 = high. This lets you use normally open or normally
closed buttons. (See also the SETPULLUPS command on page
119).

delay is a byte variable or constant (0 – 255) that specifies the
number of program loops to execute before first entering the
auto-repeat sequence.

• If delay is set to 0 both debounce and auto-repeat are
disabled.

Basic Atom 145

• If delay is set to 255 debounce is enabled, but auto-repeat
is disabled.

rate is a byte variable or constant (0 – 255) that specifies the
number of program loops to execute before auto-repeating,
after the initial delay has expired.

loopcounter is a byte variable used to store the current number
of program loops. This variable must not be used for any other
purpose within this program loop. If more than one BUTTON
command is used in your loop, you must specify a different
loopcount variable for each.

targetstate is a variable or constant (0 or 1) that determines the
logical state of the button for a branch to target to occur. 0 =
not pressed, 1 = pressed. (Pressed and not-pressed are defined
by downstate.)

target is a label to which execution will branch if the button is in
targetstate and debounce, delay and rate conditions are met.

Notes

BUTTON checks the state of an I/O pin connected to a switch and
branches according to the result. BUTTON is actually just a form of
conditional branch; it does not produce any numeric result or save any
values.

For the following notes, assume that the BUTTON parameters have been
set to see a LOW state as downstate and to branch when the button is
pressed (down). BUTTON is executed within a loop.

• Not pressed. If the button is not pressed, loopcounter is reset and
control simply passes to the next program statement. After the
following statements are executed, control must be returned to the
start of the loop.

• First press. If the button is pressed for the first time (i.e. the previous
loop pass showed it as not pressed), BUTTON first does a debounce
check.

• If debounce fails (i.e. the button wasn't actually pressed), control
passes to the next program statement as above.

• If debounce passes (i.e. the button is really pressed) BUTTON
branches to the statement defined by target. Loopcounter is also
incremented for use by the auto repeat function. The sequence

146 Basic Atom

of commands following target must return to the start of the
loop.

• Repeat delay. If the button is still pressed the next time BUTTON is
encountered (i.e. on the next pass through the loop), loopcounter is
again incremented. If loopcounter has reached the value specified
by delay execution will branch to target and loopcounter will be
reset. If loopcounter has not reached this value, it will be
incremented and execution will continue with the following
program statement

• Auto-repeat.. If the repeat delay has expired, the sequence of steps
under "Repeat delay" will be executed, but using the rate value for
loopcounter, rather than the delay value. This lets you set the initial
delay and the repeat rate independently.

Debouncing

Mechanical buttons often close and reopen many times (sometimes
hundreds of times) before stabilizing in the pressed position. This is
because of mechanical vibration of the components of the button. To
avoid having BUTTON see these intermittent cycles as many button
presses, it has a built-in debounce feature.

When BUTTON sees a valid downstate for the first time, it delays
approximately 20 ms and checks again. If the downstate is still valid, it
assumes that the button is really pressed and continues processing. If
downstate is no longer valid, this could be the result of a bounce so it is
ignored and control passes to the next program statement.

If the button really was pressed, the next execution of the BUTTON
command will show a valid downstate and processing will continue as
above.

Examples
delay var byte
rate var byte
count1 var byte
count2 var byte
delay=80
rate=40
startloop

button P4,0,delay,rate,count1,1,right
button P5,0,delay,rate,count2,1,left

goto startloop

Basic Atom 147

right
code to rotate to the right

goto startloop
left

code to rotate to the left
goto startloop

This program will check two buttons, one for right on pin 4, the other for
left on pin 5. The buttons are normally open, closed when pressed, so
they pull the pins LOW when pressed. Depending on which button is
pressed, a stepper motor (or other device) will be caused to turn left or
right.

The two BUTTON commands use different loopcount variables, count1
and count2.

Note: This program does not include code to deal with simultaneous
pressing of the two buttons.

COUNT

Counts the number of cycles (0 – 1 – 0) on an input pin during a
specified time period. Used to determine frequency. The minimum pulse
width that can be counted is 4 µs.

Syntax

count pin,period,cycles

pin is a variable or constant that specifies the input pin to be
used. This pin is automatically set to input mode.

period is a variable or constant that specifies the counting time
in milliseconds.

cycles is the variable in which the total count will be saved.
Cycles must be large enough to store the highest expected
number of cyc les.

Examples
total var word
count p3,10,total

148 Basic Atom

Will count the total number of 0-1-0 transitions on I/O pin 3 for 10 ms,
and store the result in "total". For instance, if the input frequency was
50 kHz, the count would be 500 (± 1 count).

RCTIME

Measures short time intervals, such as the charge/discharge time of an
R/C circuit.

Syntax

rctime pin, state, {TimeoutLabel, TimeoutMultiple,} result

pin is a variable or constant that specifies the I/O pin to use.
This pin will be placed into input mode and left in that mode
when the instruction finishes.

state is a variable or constant (1 or 0) that specifies the state
which will end the timing period.

TimeoutLabel is a program label. If the command times out
before the pin state changes, execution will continue at this
label. The default timeout is 65535 µs. If no TimeoutLabel is
specified, program execution will continue with the next
statement in the event of a timeout.

TimeoutMultiplier is a variable or constant that specifies a
multiplier for the default 65535 µs timeout. For example, if
timeoutmultiplier = 10, the timeout will be 655350 µs or 0.655
seconds.

ResultVariable is a variable in which the time measurement, in
µs, will be stored. This variable must be large enough to store
the maximum value set by TimeoutMultiplier.

Notes

RCTIME can be used to measure the value of capacitors or resistors, as
well as to make other triggered timing measurements. One common use
is to measure a potentiometer setting.

Basic Atom 149

0.2 uF

I/O pin

100k

Figure 20 - Measuring time with RCTIME

With a circuit similar to that shown in Figure 20 the RCTIME command is
used as follows:

1. Set the I/O pin to be an output and set it high.

2. Wait long enough for the capacitor to fully charge. About 5 time
constants19 (i.e. 5 x R x C) will do nicely.

3. Issue the RCTime command, which will switch the pin to an input
and "watch" the voltage as the capacitor discharges through the
variable resistor.

From the resulting time, the resistor or capacitor value can be calculated
(you have to know at least one of them accurately if absolute, rather
than relative, results are required).

To help in your calculations, here's some information about the Basic
Atom's I/O pins:

Approximate voltage to switch from low to high state on a
rising input

2.05V

Approximate voltage to switch from high to low state on a
falling input

0.80V

It takes about 1.83T (where T is the time constant) for the circuit to
discharge enough to trigger the RCTime command. This means that the
time constant = ResultVariable / 1.83. A sample calculation is shown
below under Examples.

Note: It's very convenient that the time constant equation also works
perfectly if time is in µs and capacitance is in µF.

19 The "time constant" of an R/C circuit is the time for it to charge to 63.2% of the

applied voltage, or to discharge to 36.8% of the initial voltage. It is calculated using
the equation T = R * C where R is in ohms and C is in farads.

150 Basic Atom

Examples

This program assumes that the circuit shown in Figure 20 is used, with
the variable resistor set to about the mid point of its rotation. Some
scaling is done to allow integer arithmetic to be used.

dtime var word
resist var word
high P3
pause 10 ; wait for capacitor to charge
rctime P3,0,dtime
resist = (10000*dtime)/(183*2) ; see text below

The program sets P3 to output, high state, and then waits 10 ms for the
capacitor to charge fully. The RCTIME command then changes P3 to an
input and waits for a low state, which occurs when the capacitor
discharges to about 0.8V. The time, in microseconds, is stored in dtime.

The resistance is then calculated using the formula:

resistance = dtime/(1.83 * capacitance)

However, to accommodate the integer arithmetic, the 1.83 and
capacitance are each multiplied by 100 (giving 183 and 2, respectively),
so the numerator must be multiplied by 10000 to compensate. These
steps could be avoided by using floating point calculations, if desired, at
the expense of program complexity and calculating time.

In the example, if dtime is 1830, the value of the resistance comes out to
be 50000 ohms.

Important: In most cases an absolute value won't be needed,
only a relative position of the variable resistor, so the resistance
calculation can be simplified.

SERVO

Operates a servo motor.

Syntax

servo pin, rotation{, repeat}

pin is a variable or constant that specifies the I/O pin used to
control the servo.

Basic Atom 151

rotation is a variable or constant that specifies the position to
which you want the servo to rotate. The value of rotation should
fall within the limits of –1200 to +1200*, with 0 being the center
position. See the Notes below for a discussion of servo motors.

* Exceeding these values could damage your servo.

repeat is an optional variable or constant that specifies the
number of times to repeat the 20 ms control sequence (default
= 30). This value must be high enough for the motor to reach
the desired position, so higher values may be required for larger
angles. Repeat allows the servo to reach the desired position
before the program continues and perhaps sets a new position.

Notes

Servo motors are controlled by a pulse width modulated signal that is
applied repeatedly at 20 ms intervals as long as the motor remains under
control. The pulse width varies from 0 to 3 ms (this is standard for servo
motors). Values from 0 to 1.5 ms rotate the motor to the left, values
from 1.5 to 3.0 ms rotate it to the right. A pulse width of 1.5 ms sets the
motor to the center of its rotation. These values are set by adjusting the
rotation parameter (see above).20

The amount of rotation varies with different motors, from about 90
degrees to 270 degrees total. You may have to determine this amount
by experiment if you don't have access to data sheets.

The control signal must be continuously applied or the motor will drift
from its set position (i.e. it won't generate any torque with no signal).
This implies that the SERVO command should be used in a program
loop.

Since servo motors take time to reach the set position, the SERVO
command repeats the pulse output for a sufficient time. Depending on
the individual servo motor, and the amount of rotation change required,
you may have to adjust the repeat parameter for the command.

For reference, the following wire colors are used by different
manufacturers:

20 Values of –1200 to +1200 don't actually cover the full 0 to 3 ms pulse width range.

They are restrained at both ends to prevent over-rotation of the servo, which could
cause damage.

152 Basic Atom

Manufacturer Power (+5V) GND (Vss) Control
Airtronics red black brown
Futaba J red black white
KO Propo red black blue
Kyosho/Pulsar red black yellow
Japan Radio (JR) red brown orange

Examples
pos var word
setpos

code to determine desired position
servo P4,pos,50

goto setpos

This simple program controls a servo connected to P4. The desired
position may be determined by any number of different input factors,
depending on the application. Since the 20 ms control sequence is
repeated 50 times, the position may only be changed about once per
second.

SPMOTOR

Operates a stepper motor.

Syntax

spmotor pin,delay,step

pin is a variable or constant specifying the lowest numbered of
4 output pins used. For example, if pin = P0, pins 0, 1, 2 and 3
will be used.

delay is a variable or constant (0 – 65535) that specifies the
delay in milliseconds between steps. The delay controls the
speed at which the stepper motor operates.

step is a variable or constant (-32682 to +32682) that specifies
the number and direction of steps the stepper motor will
execute. With correct wiring, positive values are clockwise,
negative values are counterclockwise.

Basic Atom 153

Notes

Stepper motors are precision devices that are used to control position or
rotation in small increments. Each step moves the motor an absolute,
predetermined amount (the amount varies with different stepper motors
and may be determined by experiment, or by referring to the
manufacturer's data sheets). Stepper motors are commonly found in XY
positioning tables, graphing devices, disk drives, laser printers, etc.

Stepper motors may be unipolar or bipolar. Bipolar motors require
slightly more complex control circuitry. Typically, unipolar steppers have
4 wires, bipolar have 5 wires.

The SPMOTOR command supports both unipolar and bipolar
stepper motors. Wiring for bipolar motors is not described in
this manual.

Since the inductive load of a stepper motor may exceed the ratings of
the Basic Atom, it should be driven using a buffer amplifier. The most
common device for this purpose is the ULN2803A Darlington array,
which includes protective diodes for inductive loads.

A sample circuit using a ULN2803A is shown below. Further circuit
design and determining the correct wiring of the stepper motor are
beyond the scope of this manual. Experimenting to find the right
connections is a bit tedious, but you won't damage the motor by doing
so.

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

ULN2803A

Stepper
motor

power (+)

comgnd (Vss)

P0

P1

P2

P3

Note: Data sheets and application notes for the ULN2803A are available
on the internet: a quick search will let you find many resources.

154 Basic Atom

Examples
delay var word
step var sword
delay = 50
step = -60
spmotor P0, delay, step

will cause the stepper motor to make 60 counterclockwise steps at
intervals of 50 ms.

X-10 Commands
X-10 is a protocol used by household control and monitoring devices to
communicate over the A/C house wiring. The Basic Atom has
statements to send and receive X-10 commands. An interface device is
required which provides correct signal levels, modulation and timing, as
well as isolation from the power line. Two standard interfaces are
recommended for use with the Basic Atom; both are produced by X-10
Powerhouse:

• TW523 is a send/receive unit

• PL513 is a send–only unit.

The Atom communicates with the X-10 interface using serial signals over
4 wires as described under Notes for the XIN and XOUT commands.
The interface units use 4 pin RJ11 telephone type connectors; users will
need to supply their own cables to connect to the Atom.

Information about the interface units is readily available on the internet
and from the manufacturer. A good starting place is:

http://www.x10.com/support/basicx10.htm

Protocol details can be found at

www.x10.com/technology1.htm.

Interface, protocol details and commands are not described in this manual

Basic Atom 155

It is strongly recommended to use the standard interfaces
mentioned in this section. Home made interfaces pose dangers
and are difficult to build, as well as invalidating the warranty on
other devices connected to them. Basic Micro will not be
responsible for any damage caused to the Atom or other
devices resulting from the use of other than standard, approved
interfaces.

XIN

Allows the Atom to receive input over the A/C power line from X-10
household control and monitoring devices. An interface unit (the
standard unit is a TW523 from X-10 Powerhouse) is required.

Syntax

xin datapin\zeropin,house,{timeoutlabel, timeoutcount,}{{modifier}var]

datapin is a variable or constant that specifies the pin to be used
for X-10 receive data. This pin should be connected to pin 3 of
the RJ11 connector on the interface unit. XIN will set this pin to
input mode. The pin should be pulled high with a 4.7 kohm
resistor.

zeropin is a variable or constant that specifies the pin to be used
for zero crossing detect. This pin should be connected to pin 1
of the RJ11 connector on the interface unit. XIN will set this pin
to input mode. The pin should be pulled high with a 4.7 kohm
resistor.

Note: if you are using both XIN and XOUT commands, zeropin
should be set to the same pin for both commands.

house is a variable or constant used to filter data sent to a
specific house code. If the house code sent by the X-10
interface doesn't match house the command will continue to
wait for input (it will time out if the optional timeout parameter
is specified).

 House may be selected from the pre-defined constants shown
under XOUT.

timeoutlabel is an optional label to which the XIN command will
branch if a timeout occurs.

156 Basic Atom

timeoutcount is an optional value used to specify the amount of
time to wait for input. Timing is based on commands sent from
the X-10 interface. The value of timeoutcount determines the
number of commands received from the X-10 interface before a
timeout occurs.

var is a byte variable (or list of comma separated variables) used
to store the incoming X-10 unit or keycode. The keycode (5
bits) is stored in var if house matches correctly. A list of
keycodes and their interpretation, as well as further information
about units and keycodes, is shown in Notes under XOUT,
below.

Notes

The TW523 uses the following pinout:

pin 1 zero crossing detect output
pin 2 common
pin 3 X-10 receive output
pin 4 X-10 transmit input

12 3 4

RJ11
connector

TW523 Interface Pinout

For use only with the XIN command, pin 4 may be left not connected. In
send–only applications (using XOUT) pin 3 may be left not connected.

Examples
keycode var byte
main
xin p3\p1,x_a,timeout,20,[keycode]
code to process "keycode"
goto main
timeout
code to process timeout
goto main

This program accepts any incoming unit address or keycode sent to
house A, and processes the result. If no incoming signals are addressed
to house A, after 20 commands a timeout will occur.

The interface pin 1 is connected to the Atom's P1, and the interface pin
3 is connected to the Atom's P3 (to avoid confusion).

Basic Atom 157

XOUT

Allows the Atom to send output over the A/C power line to X-10
household control devices. An interface unit (either a TW523 for
send/receive or a PL513 for send–only, both from X-10 Powerhouse) is
required.

Syntax

xout datapin\zeropin,house,[{unit,}{modifiers}keycode...]

datapin is a variable or constant that specifies the I/O pin to use
for X-10 transmit data. This pin should be connected to pin 4 of
the RJ11 connector on the interface unit. XOUT will set this pin
to output mode.

zeropin is a variable or constant that specifies the pin to be used
for zero crossing detect. This pin should be connected to pin 1
of the RJ11 connector on the interface unit. XIN will set this pin
to input mode. The pin should be pulled high with a 4.7 kohm
resistor.

Note: if you are using both XIN and XOUT commands, zeropin
should be set to the same pin for both commands.

house is a variable or constant used to send data to a specific
house code. House may be selected from the following pre-
defined constants:

code value code value code value
X_A %0110 X_G %1010 X_M %0000
X_B %0111 X_H %1011 X_N %0001
X_C %0100 X_I %1110 X_O %0010
X_D %0101 X_J %1111 X_P %0011
X_E %1000 X_K %1100
X_F %1001 X_L %1101

unit is an optional variable or constant that specifies the address
of the unit (1 to 16). The following predefined unit codes are
available:

unit value unit value unit value
X_1 %00110 X_7 %01010 X_13 %00000
X_2 %00111 X_8 %01011 X_14 %00001
X_3 %00100 X_9 %01110 X_15 %00010

158 Basic Atom

unit value unit value unit value
X_4 %00101 X_10 %01111 X_16 %00011
X_5 %01000 X_11 %01100
X_6 %01001 X_12 %01101

modifiers are command modifiers (see Chapter 8 - Command
Modifiers) used to modify the keycodes.

keycode is a variable or constant (or a list of variables or
constants) that specifies the keycode or function. Multiple
keycodes can be used in a single XOUT command, separated
by commas. See the X-10 manufacturer's documentation for
details about the use of various codes. The following pre-
defined constants are available

keycode value keycode value
X_units_off %10000 X_lights_off %10110
X_lights_on %11000 X_hail %10001
X_on %10100 X_status_on %11011
X_off %11100 X_status_off %10111
X_dim %10010 X_status_request %11111
X_bright %11010

If you examine the unit and keycode values you will see that
their values are mutually exclusive. This is how the X-10 unit tells
whether it's receiving an address or a command. Some
commands apply to all addresses and don't require an address
(except the house code, which is always required).

Notes

If the TW523 send/receive interface is used, connections and pinout are
shown under Notes for XIN, above. You may also use the PL513 if you
only want to send output to the X-10 system. Interface pinout for the
PL513 is shown here:

pin 1 zero crossing detect output
pin 2 common
pin 3 X-10 transmit common
pin 4 X-10 transmit input

12 3 4

RJ11
connector

PL513 interface pinout

Basic Atom 159

Examples
xout p4\p1,x_a,x_6,x_on

Sends a command to house A, unit 6, turning it on.

xout p4\p1,x_a,x_lights_on

Sends a command to all "house A" units turning the lights on. (The
x_lights_on X-10 command does not require a unit address but turns on
all lighting units.)

The interface pin 1 is connected to the Atom's P1, and the interface pin
4 is connected to the Atom's P4 (to avoid confusion).

LCD Commands
The LCD commands in this section are specifically designed for
use with the Hitachi 44780 controller (or equivalent). If you use
an LCD module with a different controller, these commands
probably will not work. In such cases, you can write your own
subroutines to initialize your LCD and send output to it.

A detailed explanation of the Hitachi LCD controller is beyond the scope
of this manual. The 44780 controller is use for text-mode displays, these
commands don't apply to graphical LCD displays.

Note: Some LCD modules use serial I/O. If you have such a module, the
normal SERIN, SEROUT, HSERIN and HSEROUT commands may be used
to read from and write to the module.

LCDINIT

Initializes an LCD display. This command must be used before using the
LCDREAD or LCDWRITE commands.

Syntax

lcdinit regsel\clk {\RdWrPin}, nib

regsel is a constant or variable specifying the Atom I/O pin
connected to the LCD's R/S line.

clk is a constant or variable specifying the Atom I/O pin
connected to the LCD's E (Enable) line.

160 Basic Atom

RdWrPin is an optional constant or variable specifying the Atom
I/O pin connected to the R/W (read/write) line of the LCD.

nib is a constant or variable specifying the 4 bit I/O port
connected to the data lines of the LCD. While the LDC
controller has an 8 bit port, only 4 (bits 4 to 7) are required. You
may use the following values for nib:

INA or OUTA P0 – P3
INB or OUTB P4 – P7
INC or OUTC P8 – P11
IND or OUTD P12 – P15

See page 40 for more details of these values.

Examples

If your LCD display uses the following connections:

LCD Atom
R/S P4
E P5
R/W P6
I/O port (4-7) P0, P1, P2, P3

The command:

lcdinit p4\p5\p6,outa

will initialize the display for future LCDREAD and LCDWRITE
commands.

LCDREAD

Reads the RAM on an LCD module using the Hitachi 44780 controller
or equivalent.

You must initialize the display with LCDINIT before using this
command.

Basic Atom 161

Syntax

ldcread regsel\clk\RdWrPin, nib, address, [(modifiers} var]

regsel is a constant or variable specifying the Atom I/O pin
connected to the LCD's R/S line.

clk is a constant or variable specifying the Atom I/O pin
connected to the LCD's E (Enable) line.

RdWrPin is a constant or variable specifying the Atom I/O pin
connected to the R/W (read/write) line of the LCD.

nib is a constant or variable specifying the 4 bit I/O port
connected to the data lines of the LCD. While the LDC
controller has an 8 bit port, only 4 (bits 4 to 7) are required. You
may use the following values for nib:

INA or OUTA P0 – P3
INB or OUTB P4 – P7
INC or OUTC P8 – P11
IND or OUTD P12 – P15

See page 40 for more details of these values.

address is a constant or variable that specifies the RAM location
to be read, according to this list:

address contents
1 – 127 current character in display RAM
128 and above character RAM values

modifiers are command modifiers (see Chapter 8 - Command
Modifiers) used to modify var.

var is a byte variable (or a comma – separated list of variables)
where the returned value will be stored.

Examples

If your LCD display uses the same connections as shown under
LCDINIT, the program segment:

character var byte
lcdread p4\p5\p6,outa,15,[character]

162 Basic Atom

will read the character stored at RAM address 15 and save it in
character.

LCDWRITE

Sends text output to an LCD display module that uses the Hitachi 44780
controller or equivalent.

You must initialize the display with LCDINIT before using this
command.

Syntax

lcdwrite regsel\clk{\RdWrPin}, nib,[(modifiers} expr]

regsel is a constant or variable specifying the Atom I/O pin
connected to the LCD's R/S line.

clk is a constant or variable specifying the Atom I/O pin
connected to the LCD's E (Enable) line.

RdWrPin is an optional constant or variable specifying the Atom
I/O pin connected to the R/W (read/write) line of the LCD.

nib is a constant or variable specifying the 4 bit I/O port
connected to the data lines of the LCD. While the LDC
controller has an 8 bit port, only 4 (bits 4 to 7) are required. You
may use the following values for nib:

INA or OUTA P0 – P3
INB or OUTB P4 – P7
INC or OUTC P8 – P11
IND or OUTD P12 – P15

See page 40 for more details of these values.

modifiers are command modifiers (see Chapter 8 - Command
Modifiers) used to modify expr.

expr is a variable, constant or expression that generates the data
to be written. Data may be text characters or commands. A list
of commands is given under Notes, below.

Basic Atom 163

Notes

Here is a list of commands that can be used with the LCDWRITE
command. Multiple commands may be included inside [...] if they are
comma separated.

Command Value Function
initlcd1 $133 initialize LCD display
initlcd2 $132 initialize LCD display
clear $101 clear display
home $102 return to home position
inccur $104 auto increment cursor (default)
incscr $105 auto increment display
deccur $106 auto decrement cursor
decscr $107 auto decrement display
off $108 display, cursor and blink OFF
scr $10C display ON, cursor and blink OFF
scrblk $10D display and blink ON, cursor OFF
scrcur $10E display and cursor ON, blink OFF
scrcurblk $10F display, cursor and blink ON
curleft $110 move cursor left
currright $114 move cursor right
oneline $120 set display for 1 line LCDs
twoline $128 set display for 2 line LCDs
cgram | address $140 set CGRAM address for R/W
scrram | address $180 set display RAM address for R/W

Examples

If your LCD display uses the same connections as shown under
LCDINIT, the program segment:

lcdwrite regsel\clk{\RdWrPin}, nib,[(modifiers} expr]

printch var byte
printch = $41 ; ASCII value for "A"
lcdwrite p4\p5\p6,outa,[clear,home,printch]

will clear the screen, move to the home position, and print an A on the
display.

164 Basic Atom

Video
The Atom is capable of generating an NTSC composite video signal
which can be used to display text and/or graphics on a monitor or TV
screen.

We recommend using the BasicAtom Video Board (available from Basic
Micro) which provides the required wiring and connections. However,
any of the prototyping or development boards will, with a little extra
work, allow video generation (see the hardware description under
Notes, below).

The Atom uses a block of memory (192 bytes) which acts as a screen
map, with the video screen divided into 16 columns x 12 rows of text or
graphics characters. Writing a character to any position in this block will
automatically display the character at the matching screen position.

The bitmap of each character is contained in a font library which may be
created by the user. Sample libraries for both text and graphics are
available at http://www.basicmicro.com in the Atom section, under
Samples.

Important: Video generation makes heavy demands on the
Atom's resources, and may slow down operation of your
program. It should not be used for fast response, time critical,
programs.

ENABLEVIDEO

This is actually a compiler directive, rather than a command. It loads the
font table and sets the Atom to generate video.

Syntax

enablevideo fontlib

fontlib is the filename of a predefined font bitmap library. This
file should reside in your program directory on the PC, or else a
complete path may be given.

Sample font libraries are available from Basic Micro, as
explained above.

Basic Atom 165

Notes

When the enablevideo directive is compiled, several constants become
available. These may be redefined if necessary. The constants, with their
default values, are shown here:

Video Constants
Constant Value Description
linecycles 311 cycles
vsyncwidth 40 µsec
Horizontal Timing
hsync 4 cycles
hblank 45 cycles
hsize 16 characters
hbporch 17 cycles
Vertical Timing
vpresync 6 ½ lines
vsync 6 ½ lines
vpostsync 6 ½ lines
vblank 25 lines
vsize 192 lines
vbporch 35 lines

In most cases the default values should be left unchanged.

Video Variables

When the video system is enabled, several user accessible variables are
generated:

videosound a byte variable which sets the sound/noise signal generated
on P9.

videofield a byte variable where bit 0 determines the current field being
generated

videoflags a read-only byte variable bit mapped as shown:
bit 0 = pre-vsync
bit 1 = vsync
bit 2 = post-vsync
bit 3 = vertical blank
bit 4 = active screen
bit 5 = back porch

videobuf a 192 byte long array which stores the screen characters to be
displayed. Writing a character to videobuf(n) will place that
character in position n on the screen (counting from the top
left).

166 Basic Atom

See the examples from the Basic Micro website for use of these
variables.

Hardware Connections

If you choose not to use the BasicAtom Video Board, you should
connect your Atom Module as shown below for video and sound. The
Atom generates video on P0 and P8, and sound on P9.

Atom P0

50k1k

50k1k

Atom P8

Video out

Atom P9 Audio out

Figure 21 - Video output connections

Adjust the 50 kΩ pots using an oscilloscope to meet NTSC standards as
well as possible, or simply to get the best and most stable image on your
monitor or TV. To provide the proper output impedance the output load
should be connected while you use a 'scope.

You may use a composite monitor, a TV with video input, or a VCR with
video input to connect your video signal. RF modulators (the type used
with some older video games) may also work, although the image may
not be as stable as with direct connections.

Example
enablevideo "font.lib"

where "font.lib" is in your Atom program directory will load the font
library and set up the Atom to generate video signals.

Basic Atom 167

Chapter 11 - Memory, Interrupts, Timers, etc.
This chapter includes specialized commands used for accessing memory
directly, responding to interrupts and using the Atom's built-in timers.

Memory Commands 168
Data, Peek, Poke, Read, Write, ReadDM, WriteDM

Interrupts 173
Enable, Disable, Setextint, OnInterrupt, OnPor, OnBor, OnMor, Resume

Timers 178
Setcompare, Setcapture, Getcapture, Getwatchdog, Timewatchdog,
Settmr0, Settmr1, Settmr2, Resettmr1

Conventions Used in this Chapter
{ ... } represent optional components in a command. The { } are not

to be included.

[...] used for lists – the [] are required

(...) used for some arguments. The () are required

168 Basic Atom

Memory Commands
Memory commands may be used to access memory directly. RAM,
EEPROM and even program memory may be accessed, depending on
the command.

Note: The use of program memory for data storage is described on page
42 under Tables.

More details concerning various types of memory are found on page 33.

Memory commands are provided for advanced programmers, and
memory usage and addressing is not discussed in detail in this manual.
Users should note that all PIC16F876/7 registers are available via pre-
defined variables, contents of variables are available via their names, etc.
so in the majority of cases the commands described in this section are
not essential. We have provided these commands for backwards
compatibility, and for the convenience of advanced programmers with
unusual applications.

For details of register and memory addressing and use please
consult the PIC16F87X data sheet, available at
http://www.microchip.com

DATA

This command writes data to the EEPROM memory space.

Note: DATA writes to EEPROM during Atom programming, not when the
program is subsequently run. To write data at run time, see the WRITE and
WRITEDM commands.

Syntax

data {@address,} value, {@address,} value...

address is an optional numeric address (0 to 255) to which value
will be written. If address is omitted, data will be written starting
at address 0.

value is a numeric constant (8 bits) to be written to the Atom's
EEPROM. Variables or user-defined constants can not be used
because data is written before the program runs.

Basic Atom 169

Examples
data @100,65,@110,13

will write 65 (ASCII "A") into address 100, and 13 (ASCII CR) into
address 110.

data @50,25,38,110,45

will write the values 25, 38, 110 and 45 into successive EEPROM
locations starting with address 50.

PEEK, POKE

These commands are used to read and write to RAM locations.

Syntax

peek address, variable

poke address, expression

address is a variable or constant that specifies the RAM location
(see the Warning under Notes, below).

variable is a byte variable used to store the contents of the RAM
location for the PEEK command.

expression is a variable, constant or expression that provides an
8 bit value to be stored in RAM with the POKE command.

Notes

In most cases it is easier to use variable names (or register names, all of
which are available in Atom BASIC) to access memory.

Warning! Since RAM is used to store the Atom's internal
registers as well as user data, careless use of the POKE
command could adversely affect the operation of the controller
chip. Make sure you fully understand the memory map of the
PIC16F87X before using POKE.

Examples
regvalue var byte
peek $1F,regvalue $1F is the address of register adcon0

170 Basic Atom

will give the same result as

regvalue var byte
regvalue = adcon0 ; adcon0 is a pre-defined variable

READ, WRITE

These commands are used to read and write one byte at a time to
EEPROM locations. In this respect they are equivalent to PEEK and POKE
which read and write to RAM locations.

Note: Although PEEK and POKE are usually redundant because there exist
more convenient ways to access RAM, these other ways don't exist for
EEPROM, therefore READ and WRITE are quite useful.

Syntax

read address variable

write address expression

address is a variable or constant that specifies the EEPROM
address (0 – 255) to read from or write to.

variable is a byte variable which will store the value read from
EEPROM.

expression is a variable, constant or expression that generates
the 8 bit value to store at address.

Notes

Unlike the DATA command, READ and WRITE execute when your
program is running, not when it is first written to program memory. This
lets you change EEPROM values "on the fly". Users should note the
following:

• EEPROM can be read an indefinite number of times at the same rate
as RAM can be read.

• EEPROM can be written to only a limited number of times (around
10 million), so it's generally better to use RAM for values that
change frequently.

• EEPROM is much slower to write than is RAM, so unnecessary use
of WRITE can slow down program execution.

Basic Atom 171

For example, if you change an EEPROM value once per second (about
86400 times per day) your Atom's EEPROM could be worn out in about
116 days. This is to be avoided.

Examples
contents var byte
read 100,contents

will read EEPROM address 100 and store the 8 bit result in contents.

READDM, WRITEDM

Read or write a sequence of values from/to EEPROM. Except that many
values may be read or written by one command, these commands are
essentially identical to READ and WRITE, above.

Syntax

readdm address,[{modifier} var, ... {modifier} var]

writedm address,[{modifier} expr, ... {modifier} expr]

address is a variable or constant that specifies the first EEPROM
address to read from or write to. Subsequent reads or writes
within the same command will be sequential.

modifier is any valid command modifier (see page 63). See the
HSERIN and HSEROUT commands for examples of the use of
these modifiers.

var is a variable, or sequence of variables, in which the results of
the EEPROM reads will be stored.

expr is a variable, constant or expression (or a sequence of
such) that generates data to be stored in EEPROM. Values are
stored sequentially beginning at address.

Examples
temp var byte(5)
readdm 100,[temp(0),temp(1),temp(3)]

will read the values at addresses 100, 101 and 102 and store them in
temp(0), temp(1) and temp(2) respectively.

172 Basic Atom

temp var byte(5)
code to set values of temp(n)
writedm 100,[dec1 temp(0), dec1 temp(1)]

will write the values of temp(0) and temp(1), converted to decimal ASCII
characters, in EEPROM addresses 100 and 101, respectively. Only one
decimal digit (the least significant) is written in each case.

Basic Atom 173

Interrupts
Interrupts allow immediate processing of high-priority tasks. The Atom
uses a number of interrupts, based on timers and other events, as well as
providing for external (hardware generated) interrupts.

Atom BASIC allows access to the microcontroller's built-in interrupt
processing via BASIC commands. Explanation of uses and operation of
interrupts is beyond the scope of this manual.

For more information on the operation of interrupts, refer to
the PIC16F87X data sheet, available at
http://www.microchip.com

The following interrupts are available for use in the Atom:

Name Description Reference
EXTINT External (on I/O pin P0) INTF
RBINT RB/OnChange (on I/O pins P4 – P7) RBIF
TMR0INT Timer0 T0IF
TMR1INT Timer1 TMR1IF
TMR2INT Timer2 TMR2IF
ADINT A/D conversion ADIF
RCINT Receive RCIF
TXINT Transmit TXIF
SSPINT Sync Serial SSPIF
CCP1INT Capture/Compare/PWM CCP1IF
CCP2INT Capture/Compare/PWM CCP2IF
EEINT EEPROM write complete EEIF
BCLINT I2C bus collision BCLIF

The Reference column will help you find information about each
interrupt in the PIC16F87X data sheet. (Use FIND in Acrobat Reader to
find the reference info.)

Interrupts must be enabled before they can be used. You can enable
and disable them globally or individually, using the ENABLE and
DISABLE commands, described below.

Note: See also Timers, on page 178, which may use interrupts.

174 Basic Atom

ENABLE, DISABLE

Enables or disables one or all interrupts. ENABLE must be used before
interrupts will work. DISABLE prevents the specified interrupt from
working.

To use the External or CCP interrupts, SETEXTINT or SETCOMPARE must
be used in addition to the ENABLE command to configure the Atom's
hardware.

Syntax

enable {intname}

disable {intname}

intname must be one of the interrupt names from the table on
the previous page. Intname is optional, if it is omitted all
interrupts will be enabled or disabled.

Examples
setextint ext_h2l
enable extint

Sets up the External interrupt to operate on a high to low transition, and
enables the interrupt.

SETEXTINT

Configures the Atom's hardware to use P0 for External interrupt. This
command must be used in addition to the ENABLE command before the
External interrupt will work. (If SETEXTINT is not used, P0 will remain a
conventional I/O pin and will not generate an interrupt.)

Syntax

setextint mode

mode is one of the following:

EXT_H2L interrupt on a high to low transition
EXT_L2H interrupt on a low to high transition

Basic Atom 175

Examples

See the example under ENABLE, above.

ONINTERRUPT

This is a compile time function that sets the label that the specified
interrupt will jump to when it occurs. You must also enable the interrupt
before it will work.

Syntax

oninterrupt intname, label

intname is the name of the desired interrupt (see the table on
page 173).

label is the label to which program execution will jump when
this interrupt occurs.

Note: You must use the RESUME command (see below) to return to
normal program execution after your interrupt has been processed.

Examples
oninterrupt extint, ouch
setextint ext_h2l ; set for high to low transition
enable extint ; enable the external interrupt

program code
ouch

process interrupt
resume ; return to program execution

This code will define the label for the external interrupt, set P0 to be the
interrupt pin rather than an I/O pin, define an interrupt as a high to low
transition on P0, enable the interrupt, then go on with normal
processing. If an interrupt occurs, program execution will jump to "ouch"
so the interrupt can be processed, then go back to where it was when
the interrupt occurred.

176 Basic Atom

ONPOR, ONBOR, ONMOR

Defines the target labels for pre-defined system interrupts. These
interrupts don't need to be enabled before use.

Name Interrupt Function
POR Power On Reset Generates an interrupt when power is

applied.
BOR Brown Out Reset Generates an interrupt when voltage

falls below 4.2 volts and then returns to
normal

MOR Master Reset (MCLR) or
Watchdog Timer Reset
(WDT)

Generates an interrupt if the ATN or
RES pins21 on the Atom module are
toggled, or the Watchdog Timer times
out.

These commands allow your program to have different starting points
depending on which type of reset has occurred. These commands are
processed at compile time.

Syntax

onpor label

onbor label

onmor label

label is the label to which program execution will jump if the
interrupt occurs.

Examples
onbor brownout
start
normal program code
brownout
code to process a return from brownout (reset devices,
etc.)
goto start

The ONBOR command sets an alternative starting point so your
program can perform operations specific to a recovery after a brownout.
In this example, once these operations are performed, normal operation
resumes.

21 See the Atom 24, 28 or 40 data sheet for pinout.

Basic Atom 177

RESUME

Return from interrupt. This command is used to return to the point in
your program where execution was interrupted. It should be used at the
end of the interrupt processing code for ONINTERRUPT.

Syntax

resume (no arguments)

Examples

See the example under ONINTERRUPT on page 175.

178 Basic Atom

Timers
The Atom has four timer modules, Timer 0, Timer 1, Timer 2 and the
Watchdog timer.

Timer Counter Scaling Source Sleep Notes
timer0 8 bit pre int/ext off always running
timer1 16 bit none int/ext/osc off used with

compare and
capture

timer2 8 bit pre/post int only off
watchdog post R/C runs generates

RESET22

Important: Use of the timers is considered an advanced topic
and should be attempted only by programmers thoroughly
familiar with the PIC16F876/7 chips. For information refer to
the PIC16F87X data sheet and the PIC Mid-Range MCU Family
Reference Manual, both available from
http://www.microchip.com

Note: Not all timer functions are necessarily available via Atom BASIC
commands. You may need to manipulate register bits directly to make
some settings.

Capture and Compare
Capture and Compare are inverse operations using the CCP (Compare,
Capture, PWM) modules of the Atom.

Capture Waits for an event (high to low or low to high transition) on
P9 or P10 and "captures" the 16 bit Timer1 value when the
event occurs.

Compare Waits for a defined value to match Timer1's counter, then
causes an event to occur.

These commands are discussed in detail in the PIC16F87X documentation
and are not described further in this manual.

22 The Watchdog timer continues to operate while the Atom is in Sleep mode, and may

be used to "wake up" the Atom and restart your program.

Basic Atom 179

SETCOMPARE

Sets up the compare hardware of the Atom. Allows you to specify the
event that results when the compare value matches.

This command should be used only by advanced users with a
thorough understanding of the PIC16F876/7 operation, and is
not documented beyond the information in this section.

Syntax

setcompare ccp, mode, value

ccp is either 0 or 1:

0 CCP1 Atom I/O pin P10
1 CCP2 Atom I/O pin P9

mode is one of the following:

compareoff disable compare hardware
comparesethigh sets CCP pin (high) on match
comparesetlow clears CCP pin (low) on match
compareint interrupts on a match – does not

affect CCP pin
comparespecial special function on a match (see

notes, below)
value specifies the comparison value to match (16 bit).

Notes

SETCOMPARE sets the necessary registers and hardware to enable a
compare operation. Depending on the CCP value, either I/O pin 9
(CCP2) or I/O pin 10 (CCP1) is used.

The compare function always generates an interrupt (CCP1INT or
CCP2INT). This interrupt may be used if you:

! use ONINTERRUPT to specify a destination label, and
! use ENABLE to enable CCP1INT or CCP2INT.

If the compareint mode is used, the interrupt will be generated but the
CCP pin will not be affected.

The comparespecial mode setting works differently for CCP1 and CCP2:

180 Basic Atom

CCP1 Timer1 is reset
CCP2 Timer1 is reset and an A/D conversion is started (if the A/D

hardware is enabled).

Examples
oninterrupt ccp1int,match
enable ccp1int
setcompare 1,comparesethigh,1000

program code
match

interrupt processing code
resume

This program segment sets up the compare function, enables the correct
interrupt, then sets Pin 10 HIGH and jumps to "match" when the timer
counter reaches 1000. The timer is automatically reset, and after the
interrupt is processed program execution resumes where it left off.

SETCAPTURE

Sets up the capture hardware of the Atom. Allows you to specify what
type of event triggers the capture. The capture hardware allows you to
time external events.

This command should be used only by advanced users with a
thorough understanding of the PIC16F876/7 operation, and is
not documented beyond the information in this section.

Syntax

setcapture ccp, mode

ccp is either 0 or 1:

0 CCP1 Atom I/O pin P10
1 CCP2 Atom I/O pin P9

mode is one of the following:

CAPTUREOFF disables capture hardware
CAPTURE1H2L captures on every high to low

transition on the I/O pin
CAPTURE1L2H captures on every low to high

transition on the I/O pin

Basic Atom 181

CAPTURE4L2H captures on every 4th low to high
CAPTURE16L2H captures on every 16th low to high

Notes

The capture hardware generates an interrupt when the specified event
occurs. The interrupt processing code should use the GETCAPTURE
command to obtain the counter value at the time of the capture. Before
using this interrupt you must:

! use ONINTERRUPT to specify a destination label, and
! use ENABLE to enable CCP1INT or CCP2INT.

Examples
oninterrupt ccp1int,pinevent
enable ccp1int
setcapture 1,capture4l2h
capvalue var word

program code
pinevent

getcapture capvalue
interrupt processing code

resume

This program segment sets up the capture function, enables the correct
interrupt, then jumps to "pinevent" every 4th time Pin 10 has toggled
from low to high. After the interrupt is processed program execution
resumes where it left off.

GETCAPTURE

Retrieves the value saved by the latest capture event. To use this
command, a SETCAPTURE must have been established as shown above.

Syntax

getcapture variable

variable is a bit, nibble, byte, word or long variable. If the
variable is too small, only the least significant bits will be
retrieved. (The counter is 16 bits).

182 Basic Atom

Examples

See the example under SETCAPTURE, above.

TIMEWATCHDOG

Resets the Watchdog Timer and waits for a reset. Calculates the time
prior to the reset.

This command should be used only by advanced users with a
thorough understanding of the PIC16F876/7 operation, and is
not documented beyond the information in this section.

Syntax

timewatchdog

(no parameters)

Notes

The watchdog timer is always running. Its function is to generate a reset.
Since it continues to work when the Atom is in Sleep mode, it can be
used to restart the Atom if your program has failed due to an external
event.

TIMEWATCHDOG resets the timer and waits for a reset. No further
commands are executed until after the reset. The watchdog timer runs at
a rate that's linearly dependent on temperature, and can be used as a
form of thermometer (measuring chip temperature, not necessarily
ambient temperature). You can do this as follows:

1. Establish a low or high known temperature (verify with a
thermometer).

2. Use an ONMOR command, which will execute when the watchdog
timer resets the chip.

3. Use TIMEWATCHDOG to restart the watchdog timer.

4. The first command after the reset must be a GETWATCHDOG
which will record the time taken.

Basic Atom 183

5. Repeat the above with a second temperature. You have now
calibrated the watchdog timer and can measure temperatures by
interpolating.

Note: Extrapolation should also work, but will be less accurate.

Example
onmor gettime
tempval var word
timewatchdog ; program stops here until reset
gettime ; program starts here after reset

getwatchdog tempval
code to process and display the time

Do this for one temperature, then again for a different temperature.
Draw a linear calibration curve.

GETWATCHDOG

Retrieves the last calculated Watchdog timeout value.

Syntax

getwatchdog variable

variable is a bit, nibble, byte, word or long variable which stores
the timeout count.

Notes

This command retrieves a value established by the TIMEWATCHDOG
command. The nominal period of the Watchdog timer is 18 ms. Since
the timer is based on a simple R/C oscillator, and is not derived from the
system clock, GETWATCHDOG gives you the ability to calculate an
accurate watchdog timeout (using the SLEEP command) and to
compensate for temperature variations.

Example

See example under TIMEWATCHDOG, above.

184 Basic Atom

SETTMR0

Sets the Timer 0 registers as specified by the mode parameter

This command should be used only by advanced users with a
thorough understanding of the PIC16F876/7 operation, and is
not documented beyond the information in this section.

Syntax

settmr0 mode

mode is one of the following:

! tmr0intpre for internal clock
! tmr0extlpre for external clock, low to high transitions*
! tmr0exthpre for external clock, high to low transitions*

where pre is 1, 2, 4, 8, 16, 32, 64, 128 or 256

e.g. tmr0extl8 uses external clock, low to high transitions, 1:8
prescaler ratio.

Default mode is tmr0int1

* Not available with Atom 28 or 40 pin modules.

Notes

Timer 0 is an 8 bit timer that is always running.

If an external oscillator is used, it must be connected to the PIC16F876
RA4/T0CKI pin. This pin is connected to solder pad AX2 on the 24 pin
Atom module. It is not available on the 28 and 40 pin Atom modules.

Timer0 may be used to generate an interrupt. To do this you need to:

! use ONINTERRUPT to specify a destination label, and
! use ENABLE to enable TMR0INT.

Examples
settmr0 tmr0int16

Sets the Timer 0 hardware register to use internal clock, 1:16 prescaler.

Basic Atom 185

SETTMR1

Sets the operating mode of Timer 1.

This command should be used only by advanced users with a
thorough understanding of the PIC16F876/7 operation, and is
not documented beyond the information in this section.

Syntax

settmr1 mode

mode is one of the following:

Mode Clock Prescaler Notes
tmr1off Disable timer (default)
tmr1int1 1:1
tmr1int2 1:2
tmr1int4 1:4
tmr1int8

internal

1:8

Based on internal
crystal clock.

tmr1ext1 1:1
tmr1ext2 1:2
tmr1ext4 1:4
tmr1ext8

external
osc.

1:8

Oscillator uses pins
T1OSI and T1OSO
(Atom pin 8 and 9).

tmr1async1 1:1
tmr1async2 1:2
tmr1async4 1:4
tmr1async8

external
async

1:8

Clock uses pin T1CKI
(Atom pin 8)

Notes

Timer 1 is a 16 bit timer that can be used in a variety of modes. Design
of external oscillators or wiring for external clock is beyond the scope of
this manual.

Timer1 may be used to generate an interrupt. To do this you need to:

! use ONINTERRUPT to specify a destination label, and
! use ENABLE to enable TMR1INT.

Examples
settmr1 tmr1int8

Sets Timer1 to use internal clock, 1:8 prescaler.

186 Basic Atom

RESETTMR1

Lets you reset Timer1 to a specified value (16 bits)

Syntax

resettmr1 expr

expr is a variable, constant or expression that determines the
starting value for Timer1.

Notes

This command lets you pre-set Timer1 to a value greater than the default
0 so that it will time out in a shorter period. Normally the timer will
overflow from 65535 to 0, generating an interrupt. If, for example, you
set expr to 15535, Timer1 will overflow in 50000 clock ticks.

Examples
resettmr1 15535

Sets Timer1 so that it will overflow in 65535 – 15535 = 50000 clock
ticks.

SETTMR2

Sets the operating mode of Timer 2.

This command should be used only by advanced users with a
thorough understanding of the PIC16F876/7 operation, and is
not documented beyond the information in this section.

Syntax

settmr1 mode, period

mode is a predefined constant chosen as shown under Notes,
below. Using a mode of TMR2OFF disables Timer2 (default).

period specifies the value at which Timer2 will reset (8 bit).

Notes

Timer2 is an 8 bit timer with both pre and post scalers.

Basic Atom 187

Timer2 may be used to generate an interrupt. To do this you need to:

! use ONINTERRUPT to specify a destination label, and
! use ENABLE to enable TMR2INT.

For mode you may use a predefined constant constructed as follows:

TMR2OFF (disables Timer2, default) or

TMR2PREnPOSTm

Where

n is one of 1, 4 or 16 which determines the pre-scaler ratio, and

m is a number from 1 – 16 which determines the post-scaler
ratio.

For example, the constant TMR2PRE4POST11 specifies a prescaler ratio
of 1:4 and a postscaler ratio of 1:11.

Examples
settmr2 tmr2pre1post12

Sets Timer2 to use a pre-scaler of 1:1 and a post-scaler of 1:12.

188 Basic Atom

This page intentionally left blank

Basic Atom 189

SECTION 3:
Miscellaneous

Questions and Answers ...190
Glossary...195
List of Reserved Words..197
Index of Commands..209
Main Index ...1

190 Basic Atom

This page intentionally left blank

Basic Atom 191

Questions and Answers
These questions and answers summarize points discussed in the text.

Q How do I start the Basic Atom’s program running?

A If you’ve already downloaded the program, just connect the power
or press the RESET button on the development board.

If you’re compiling a program using the Program button in the IDE,
it will start running as soon as the download is complete.

If you're compiling a program using the Debug button in the IDE, it
will start when you press the RUN button.

Q How can I run my program a second time with out re-compiling it?

A Once your program ends, the Atom goes to "sleep" and no longer
responds to commands. Press the RESET button on the development
board, or turn the power OFF and back ON again to re-run your
program.

Q Do I lose my program if I disconnect the power from the Basic Atom?

A No. Your program is stored in semi-permanent “flash” memory and
will be retained until it’s overwritten by a new program.

Q Once I’ve compiled a program can I use the object code to program
many Basic Atoms?

A Although the object code is saved on your PC, it can’t be re-used.
Just re-compile the source program for each Basic Atom you want to
program.

192 Basic Atom

Q Once I compile “traffic.bas” I see the files “traffic.bin” and
“traffic.pdb” in the same directory. What are they?

A These are files generated by the compiler; “traffic.bin” is the
compiled object code that’s downloaded to the Basic Atom, and
“traffic.pdb” is a file used in debugging.

You can safely delete both of these files once everything’s working.

Q What’s the difference between the 24, 28 and 40 pin Basic Atom
modules?

A Mainly in the number and type of I/O pins. See the table on page 5
as well as the data sheets for more information. The 24 pin Atom
also has the analog pins available as solder pads rather than
connected to pins.

Q Can I build my own board for a Basic Atom module?

A Yes. You might consider using a development board for designing
your project and programming the Basic Atom module. Then just
transfer the programmed module to your own circuit. This has the
added advantage that you don’t need to include RS-232 circuitry on
your project board.

Q When I define variables, how are they allocated in memory?

A Variables are allocated sequential memory space, in the order in
which they are defined. For example, if you define byte variables as
follows:

a var byte
b var byte
c var byte

they will occupy three successive bytes in memory.

Q Tell me more about arrays.

A Arrays in Atom Basic are simply a series of bytes, words, etc.
assigned in sequence. For example, if you define an array as

a var byte(10)

this will set aside 10 sequential memory locations, numbered 0 to 9.
If you subsequently define another variable, it will be assigned the
next sequential memory location. So

Basic Atom 193

b var byte

will assign b to the 11th memory location following a(0).

In fact, you can actually access "b" as "a(10)" since Atom Basic
doesn't check for out of range array subscripts.

Q Does that mean that array and simple variables can overlap?

A Yes, depending on how the variables are defined. For simplicity, let's
assume that we're using byte variables, and we define a, b, c, d and
e as successive byte variables.

You can now actually access, say, "c" as "a(2)" even though "a" was
not defined as an array. Be careful doing this if your variables aren't
all of the same type: it could get confusing.

Q Can you suggest any use for the above?

A Yes, there are many possibilities. One example would be to output a
number of variables by "pretending" that they are an array. So if we
had the same five variables (a, b, c, d, e) as defined in the previous
answer, they could be output with a single statement such as:

hserout str a\5

Note: The values will be output in numeric form without conversion
to ASCII characters.

Q How do I find out more technical information about the Atom?

A Hardware technical information is can be found on the Atom 24, 28
or 40 pin module data sheets. These are available online at
http://www.basicmicro.com or may be ordered from Basic Micro.

Detailed hardware, feature and programming information can be
found in the PIC16F87X Data Sheet and the PIC Micro Mid-Range
MCU Family Reference Manual. Both are available online at
http://www.microchip.com

By a careful comparison among Atom BASIC commands, and the
Atom and PIC data sheets, you can learn a great deal about how the
Atom works.

194 Basic Atom

Q Atom BASIC doesn't have a command to do exactly what I need. Can
I address the microcontroller directly?

A Yes. Atom BASIC includes pre-defined variables that let you access
the microcontroller's registers directly. These registers are bit
mapped so you should be familiar with this type of operation before
attempting to use registers. The use of registers directly is for
advanced programmers only.

Warning: Be sure you are thoroughly familiar with the
operation of the microcontroller before trying to manipulate
registers directly. Basic Micro neither documents nor supports
(via technical support) such operation.

Basic Atom 195

Glossary
Argument A constant, variable or other value used by a function to

calculate a result.
Breadboard Hardware development board with interconnected

sockets for wire jumpers and component leads.
Compiler A computer program that accepts commands in a

source language (designed for easy human
manipulation) and uses them to generate an “object”
program which is then run on the same or another
computer. The Basic Micro IDE includes a compiler.

Constant A program item that has a fixed value that does not
change during program operation.

decimal Numbers based on the decimal system, i.e. powers of
10. Decimal numbers may or may not have a fractional
part.

DIP Dual in line package. A package for integrated circuits,
resistor networks, opto-electronics, etc. with two rows of
pins.

EEPROM Electronically Erasable Programmable ROM. A type of
read only memory that can be modified as often as
needed. Contents are retained during power off periods.

Flash A type of read-only memory that can be modified during
programming. Contents are retained during power off
periods until they are explicitly modified again. May
have a limited number of write cycles.

IC Integrated circuit
IDE Integrated Development Environment – Basic Micro’s

software development program.
integer A positive, negative or unsigned number with no

fractional part.
LED Light Emitting Diode. A semiconductor device that

radiates visible or infrared light when a current passes
through it.

LSB Least Significant Bit. The rightmost bit or bits in a
number. For example, in the number %10001010 the
LSB is "0". (Sometimes used as Least Significant Byte.)

Microcontroller A special-purpose microcomputer chip designed for
control applications.

MSB Most Significant Bit. The leftmost bit or bits in a number.
For example, in the number %10001011 the MSB is "1".

196 Basic Atom

(Sometimes used as Most Significant Byte.)
Object code The compiled result of a Basic Atom program which is

downloaded to the Basic Atom module.
PC Personal Computer. For purposes of this manual a PC

is an Intel (or similar) based computer running Windows
95, 98, ME, XP, NT4 or 2000.

PCB Printed circuit board
Plated through
hole

A hole in a PCB that’s metal plated on both sides and
through the hole itself. Used as a solder point for one or
more connections, and to connect traces on both sides
of the PCB.

RAM Random Access Memory. A memory area used for
storage of variables during program operation. Contents
are not maintained during power off periods.

ROM Read Only Memory. Memory for storing programs and
constants that are permanent or semi-permanent. See
also “Flash”.

RS-232 Serial data interface standard used to interconnect
computers and hardware.

Runtime library That part of the object code that includes support for all
the functions used in a program.

Serial data Data that is sent in sequence, one bit at a time, over a
single wire.

SIP Single in line package. A package for integrated
circuits, resistor networks, etc. with a single row of pins
spaced 0.10 inch apart.

Stack An area in RAM used to store temporary values or
addresses that change during program operation.

Target variable The variable used to store the result of a calculation.
Variable A program item which has a value that may change

during program operation.
Vdd Positive voltage (drain voltage)
Vss Negative or ground voltage (source voltage)

Basic Atom 197

List of Reserved Words
Reserved words can not be used as labels, constants or variables. All
command names are reserved words. The table below lists all Atom
BASIC reserved words.

All math functions
Any name starting with a "_"
Any name starting with a number.
ACKDT
ACKEN
ACKSTAT
ADCON0
ADCON1
ADCS0
ADCS1
ADDCF
ADDDCF
ADDEN
ADDLW
ADDWF
ADFM
ADIN
ADON
ADRESH
ADRESL
AD_LNEG
AD_LON
AD_LPOS
AD_RNEG
AD_RON
AD_RPOS
ANDLW
ANDWF
AX0
AX1
AX2
AX3
B
BANKISEL
BANKSEL
BC
BCF
BDC
BF
BIT

BNC
BNDC
BNZ
BRGH
BSF
BTFSC
BTFSS
BUTTON
BYTE
BYTETABLE
BZ
C
CALL
CAPTURE16L2H",0x07);
CAPTURE1H2L",0x04);
CAPTURE1L2H",0x05);
CAPTURE4L2H",0x06);
CAPTUREOFF",0x00);
CBLOCK
CCP1CON
CCP1M0
CCP1M1
CCP1M2
CCP1M3
CCP1X
CCP1Y
CCP2CON
CCP2M0
CCP2M1
CCP2M2
CCP2M3
CCP2X
CCP2Y
CCPR1H
CCPR1L.155
CCPR2H
CCPR2L
CGRAM
CHS0
CHS1

198 Basic Atom

CHS2
CKE
CKP
CLEAR
CLEAR
CLRC
CLRDC
CLRF
CLRW
CLRWDT
CLRZ
CODE
COMF
COMPAREINT",0x0A);
COMPAREOFF",0x00);
COMPARESETHIGH",0x08);
COMPARESETLOW",0x09);
COMPARESPECIAL",0x0B);
CONSTANT
COUNT
CREN
CSRC
CURLEFT
CURRIGHT
D
DA
DATA_ADDRESS
DB
DC
DE
DEBUG
DEBUGIN
DECCUR
DECF
DECFSZ
DECSCR
DIR0
DIR1
DIR10
DIR11
DIR12
DIR13
DIR14
DIR15
DIR16
DIR17
DIR18

DIR19
DIR2
DIR20
DIR21
DIR22
DIR23
DIR24
DIR25
DIR26
DIR27
DIR28
DIR29
DIR3
DIR30
DIR31
DIR4
DIR5
DIR6
DIR7
DIR8
DIR9
DIRA
DIRB
DIRC
DIRD
DIRE
DIRF
DIRH
DIRL
DIRM
DIRS
DISABLE
DO
DT
DTMFOUT
DTMFOUT2
DW
D_A
EEADR
EECON1
EECON2
EEDATA
ELSE
ELSEIF.156
ENABLE
END
ENDC

Basic Atom 199

ENDIF
ENDM
EQU
ERROR
ERRORLEVEL
EXITM
EXPAND
EXTERN
EXT_H2L",0x00);
EXT_L2H",0x40);
FASTLSBPOST", 0x7);
FASTLSBPRE", 0x5);
FASTMSBPOST", 0x6);
FASTMSBPRE", 0x4);
FERR
FILL
FLOATTABLE
FOR
FREQOUT
GCEN
GETCAPTURE
GETWATCHDOG
GLOBAL
GO
GOSUB
GOTO
GOTO
GO_DONE
H115200
H1200
H12000
H1250000
H14400
H16800
H19200
H21600
H2400
H24000
H250000
H26400
H28800
H300
H31200
H312500
H33600
H36000
H38400

H4800
H57600
H600
H625000
H7200
H9600
HIGH
HOME
HPWM
HSERIN
HSEROUT
I115200
I1200
I12000
I14400
I16800
I19200
I21600
I2400
I24000
I26400
I28800
I2CIN
I2COUT
I2C_DATA
I2C_READ
I2C_START
I2C_STOP
I300
I31200
I33600
I36000
I38400
I4800
I57600
I600
I7200
I9600
IBF
IBOV
IDATA
IE115200
IE1200
IE12000.157
IE14400;
IE16800
IE19200

200 Basic Atom

IE21600
IE2400
IE24000
IE26400
IE28800
IE300
IE31200
IE33600
IE36000
IE38400
IE4800
IE57600
IE600
IE7200
IE9600
IEMODE
IEO115200
IEO1200
IEO120000
IEO14400
IEO16800
IEO19200
IEO21600
IEO2400
IEO24000
IEO26400
IEO28800
IEO300
IEO31200
IEO33600
IEO36000
IEO38400
IEO4800
IEO57600
IEO600
IEO7200
IEO9600
IEOMODE
IF
IFDEF
IFNDEF
IMODE
IN0
IN1
IN10
IN11
IN12

IN13
IN14
IN15
IN16
IN17
IN18
IN19
IN2
IN20
IN21
IN22
IN23
IN24
IN25
IN26
IN27
IN28
IN29
IN3
IN30
IN31
IN4
IN5
IN6
IN7
IN8
IN9
INA
INB
INC
INCCUR
INCF
INCFSZ
INCSCR
IND
INE
INF
INH
INITLCD1
INITLCD2
INL
INM
INPUT
INS.158
INTEDG
IO115200
IO1200

Basic Atom 201

IO12000
IO14400
IO16800
IO19200
IO21600
IO2400
IO24000
IO26400
IO28800
IO300
IO31200
IO33600
IO36000
IO38400
IO4800
IO57600
IO600
IO7200
IO9600
IOMODE
IORLW
IORWF
IRP
LCALL
LCDREAD
LCDWRITE
LGOTO
LIST
LOCAL
LONG
LONGTABLE
LOOKDOWN
LOOKUP
LOW
LSBFIRST", 0x1);
LSBPOST", 0x3);
LSBPRE", 0x1);
MACRO
MESSG
MOVF
MOVFW
MOVLW
MOVWF
MSBFIRST", 0x0);
MSBPOST", 0x2);
MSBPRE", 0x0);
N115200

N1200
N12000
N14400
N16800
N19200
N21600
N2400
N24000
N26400
N28800
N300
N31200
N33600
N36000
N38400
N4800
N57600
N600
N7200
N9600
NAP
NE115200
NE1200
NE12000
NE14400;
NE16800
NE19200
NE21600
NE2400
NE24000
NE26400
NE28800
NE300
NE31200
NE33600
NE36000
NE38400
NE4800
NE57600
NE600
NE7200
NE9600
NEGF
NEMODE.159
NEO115200
NEO1200
NEO120000

202 Basic Atom

NEO14400
NEO16800
NEO19200
NEO21600
NEO2400
NEO24000
NEO26400
NEO28800
NEO300
NEO31200
NEO33600
NEO36000
NEO38400
NEO4800
NEO57600
NEO600
NEO7200
NEO9600
NEOMODE
NEXT
NIB
NMODE
NO115200
NO1200
NO12000
NO14400;
NO16800
NO19200
NO21600
NO2400
NO24000
NO26400
NO28800
NO300
NO31200
NO33600
NO36000
NO38400
NO4800
NO57600
NO600
NO7200
NO9600
NOEXPAND
NOLIST
NOMODE
NOP

NOT_A
NOT_ADDRESS
NOT_BO
NOT_BOR
NOT_DONE
NOT_PD
NOT_POR
NOT_RBPU
NOT_RC8
NOT_T1SYNC
NOT_TO
NOT_TX8
NOT_W
NOT_WRITE
OBF
OERR
OFF
ONBOR
ONELINE
ONELINE5X11
ONINTERRUPT
ONMOR
ONPOR
OPTION
OPTION_REG
ORG
OUT0
OUT1
OUT10
OUT11
OUT12
OUT13
OUT14
OUT15
OUT16
OUT17
OUT18
OUT19
OUT2
OUT20
OUT21
OUT22
OUT23
OUT24
OUT25.160
OUT26
OUT27

Basic Atom 203

OUT28
OUT29
OUT3
OUT30
OUT31
OUT4
OUT5
OUT6
OUT7
OUT8
OUT9
OUTA
OUTB
OUTC
OUTD
OUTE
OUTF
OUTH
OUTL
OUTM
OUTPUT
OUTS
OWIN
OWOUT
P
P0
P1
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P2
P20
P21
P22
P23
P24
P25
P26
P27
P28

P29
P3
P30
P31
P4
P5
P6
P7
P8
P9
PAGE
PAGESEL
PAUSE
PAUSECLK
PAUSEUS
PCFG0
PCFG1
PCFG2
PCFG3
PCL
PCON
PEEK
PEN
POKE
PORTA
PORTB
PORTC
PORTD
PORTE
PR2
PROCESSOR
PS0
PS1
PS2
PSA
PSPMODE
PULSIN
PULSOUT
PU_OFF",0x80);
PU_ON",0x00);
PWM
R
RADIX
RC8_9
RC9.161
RCD8
RCEN

204 Basic Atom

RCREG
RCSTA
RCTIME
RD
READ
READDM
READPM
READ_WRITE
REPEAT
RES
RESETTMR1
RESUME
RETFIE
RETLW
RETURN
RETURN
REVERSE
RLF
RP0
RP1
RRF
RSEN
RX9
RX9D
R_W
S
SBYTE
SCR
SCRBLK
SCRCUR
SCRCURBLK
SCRLEFT
SCRRAM
SCRRIGHT
SEN
SERDETECT
SERIN
SEROUT
SERVO
SET
SETC
SETCAPTURE
SETCOMPARE
SETDC
SETEXTINT
SETHSERIAL
SETPULLUPS

SETTMR0
SETTMR1
SETTMR2
SETZ
SHIFTIN
SHIFTOUT
SKPDC
SKPNC
SKPNDC
SKPNZ
SKPZ
SLEEP
SLEEP
SMP
SOUND
SOUND2
SPACE
SPBRG
SPEN
SPMOTOR
SREN
SSPADD
SSPBUF
SSPCON
SSPCON2
SSPEN
SSPM0
SSPM1
SSPM2
SSPM3
SSPOV
SSPSTAT
STATUS
STEP
STOP
SUBCF
SUBDCF
SUBLW
SUBTITLE
SUBWF
SWAP
SWAPF
SWORD
SYNC
S_IN.162
S_OUT
T0CS

Basic Atom 205

T0SE
T1CKPS0
T1CKPS1
T1CON
T1INSYNC
T1OSCEN
T1SYNC
T2CKPS0
T2CKPS1
T2CON
THEN
TIMEWATCHDOG
TITLE
TMR0
TMR0EXTH1",0x38);
TMR0EXTH128",0x36);
TMR0EXTH16",0x33);
TMR0EXTH2",0x30);
TMR0EXTH256",0x37);
TMR0EXTH32",0x34);
TMR0EXTH4",0x31);
TMR0EXTH64",0x35);
TMR0EXTH8",0x32);
TMR0EXTL1",0x28);
TMR0EXTL128",0x26);
TMR0EXTL16",0x23);
TMR0EXTL2",0x20);
TMR0EXTL256",0x27);
TMR0EXTL32",0x24);
TMR0EXTL4",0x21);
TMR0EXTL64",0x25);
TMR0EXTL8",0x22);
TMR0INT1",0x08);
TMR0INT128",0x06);
TMR0INT16",0x03);
TMR0INT2",0x00);
TMR0INT256",0x07);
TMR0INT32",0x04);
TMR0INT4",0x01);
TMR0INT64",0x05);
TMR0INT8",0x02);
TMR1ASYNC1",0x0B);
TMR1ASYNC2",0x1B);
TMR1ASYNC4",0x2B);
TMR1ASYNC8",0x3B);
TMR1CS
TMR1EXT1",0x07);

TMR1EXT2",0x17);
TMR1EXT4",0x27);
TMR1EXT8",0x37);
TMR1H
TMR1INT1",0x01);
TMR1INT2",0x81);
TMR1INT4",0x21);
TMR1INT8",0x31);
TMR1L
TMR1OFF",0x00);
TMR1ON
TMR2
TMR2OFF",0x00);
TMR2ON
TMR2PRE16POST1",0x07);
TMR2PRE16POST10",0x97);
TMR2PRE16POST11",0xa7);
TMR2PRE16POST12",0xb7);
TMR2PRE16POST13",0xc7);
TMR2PRE16POST14",0xd7);
TMR2PRE16POST15",0xe7);
TMR2PRE16POST16",0xf7);
TMR2PRE16POST2",0x17);
TMR2PRE16POST3",0x27);
TMR2PRE16POST4",0x37);
TMR2PRE16POST5",0x47);
TMR2PRE16POST6",0x57);
TMR2PRE16POST7",0x67);
TMR2PRE16POST8",0x77);
TMR2PRE16POST9",0x87);
TMR2PRE1POST1",0x04);
TMR2PRE1POST10",0x94);
TMR2PRE1POST11",0xa4);
TMR2PRE1POST12",0xb4);
TMR2PRE1POST13",0xc4);
TMR2PRE1POST14",0xd4);
TMR2PRE1POST15",0xe4);
TMR2PRE1POST16",0xf4);
TMR2PRE1POST2",0x14);
TMR2PRE1POST3",0x24);
TMR2PRE1POST4",0x34);
TMR2PRE1POST5",0x44);
TMR2PRE1POST6",0x54);
TMR2PRE1POST7",0x64);
TMR2PRE1POST8",0x74);.163
TMR2PRE1POST9",0x84);
TMR2PRE4POST1",0x05);

206 Basic Atom

TMR2PRE4POST10",0x95);
TMR2PRE4POST11",0xa5);
TMR2PRE4POST12",0xb5);
TMR2PRE4POST13",0xc5);
TMR2PRE4POST14",0xd5);
TMR2PRE4POST15",0xe5);
TMR2PRE4POST16",0xf5);
TMR2PRE4POST2",0x15);
TMR2PRE4POST3",0x25);
TMR2PRE4POST4",0x35);
TMR2PRE4POST5",0x45);
TMR2PRE4POST6",0x55);
TMR2PRE4POST7",0x65);
TMR2PRE4POST8",0x75);
TMR2PRE4POST9",0x85);
TOGGLE
TOUTPS0
TOUTPS1
TOUTPS2
TOUTPS3
TRIS
TRISA
TRISB
TRISC
TRISD
TRISE
TRISE0
TRISE1
TRISE2
TRMT
TSTF
TWOLINE
TX8_9
TX9
TX9D
TXD8
TXEN
TXREG
TXSTA
UA
UDATA
UDATA_ACS
UDATA_OVR
UDATA_SHR
UNTIL
UPPER
VARIABLE

WCOL
WDTPS1",0x08);
WDTPS128",0x0F);
WDTPS16",0x0C);
WDTPS2",0x09);
WDTPS32",0x0D);
WDTPS4",0x0A);
WDTPS64",0x0E);
WDTPS8",0x0B);
WEND
WHILE
WORD
WORDTABLE
WR
WREN
WRERR
WRITE
WRITEDM
WRITEPM
XIN
XORLW
XORWF
XOUT
X_1",0x0C);
X_10",0x1E);
X_11",0x06);
X_12",0x16);
X_13",0x00);
X_14",0x10);
X_15",0x08);
X_16",0x18);
X_2",0x1C);
X_3",0x04);
X_4",0x14);
X_5",0x02);
X_6",0x12);
X_7",0x0A);
X_8",0x1A);
X_9",0x0E);
X_A",0x6);
X_B",0xE);
X_Bright
X_C",0x2);
X_D",0xA);
X_Dim.164
X_E",0x1);
X_F",0x9);

Basic Atom 207

X_G",0x5);
X_H",0xD);
X_Hail
X_I",0x7);
X_J",0xF);
X_K",0x3);
X_L",0xB);
X_Lights_Off
X_Lights_On
X_M",0x0);

X_N",0x8);
X_O",0x4);
X_Off
X_On
X_P",0xC);
X_Status_Off
X_Status_On
X_Status_Request
X_Units_On
Z

208 Basic Atom

This page intentionally left blank

Basic Atom 209

Index of Commands

#ELSE 29
#ELSEIF 30
#ELSEIFDEF, #ELSEIFNDEF 30
#IF ... #ENDIF 28
#IFDEF ... #ENDIF 29
#IFNDEF ... #ENDIF 29
#include 27
= (LET) 76
ADIN 142
BRANCH 81
BUTTON 144
CLEAR 76
COUNT 147
DATA 168
DEBUG 93
DEBUGIN 95
DO... WHILE 88
DTMFOUT 126
DTMFOUT2 127
ENABLE, DISABLE 174
ENABLEVIDEO 164
END, STOP 118
EXCEPTION 83
FOR... NEXT 87
FREQOUT 129
GETCAPTURE 181
GETWATCHDOG 182
GOSUB... RETURN 82
GOTO 81
HEX, DEC, BIN 65
HIGH, LOW, TOGGLE 118
HPWM 130
HSERIN 96
HSEROUT 98
HSERSTAT 99
I2CIN 107
I2COUT 109
IF... THEN... ELSEIF... ELSE...
ENDIF 84
IHEX, IBIN 68
INPUT, OUTPUT, REVERSE 119
ISHEX, ISBIN 69
LCDINIT 159
LCDREAD 160

LCDWRITE 162
LOOKDOWN 77
LOOKUP 77
NAP 122
ONINTERRUPT 175
ONPOR, ONBOR, ONMOR 176
OWIN, OWOUT 112
PAUSE 120
PAUSECLK 121
PAUSEUS 121
PEEK, POKE 169
PULSIN 135
PULSOUT 134
PUSH, POP 79
PUSHW, POPW 79
PWM 132
RCTIME 148
READ, WRITE 170
READDM, WRITEDM 171
REAL 70
REAL, REP 70
REP 70
REPEAT... UNTIL 91
RESETTMR1 186
RESUME 177
SERDETECT 106
SERIN 101
SEROUT 103
SERVO 150
SETCAPTURE 180
SETCOMPARE 179
SETEXTINT 174
SETHSERIAL 100
SETPULLUPS 119
SETTMR0 184
SETTMR1 185
SETTMR2 186
SHEX, SDEC, SBIN 67
SHIFTIN 114
SHIFTOUT 116
SKIP 73
SLEEP 123
SOUND 138
SOUND2 139

210 Basic Atom

SOUND8 140
SPMOTOR 152
STR 66
SWAP 78
TIMEWATCHDOG 182
WAIT 73

WAITSTR 72
WAITSTR, WAIT, SKIP 72
WHILE... WEND 90
XIN 155
XOUT 157

Basic Atom 1

Main Index

A
analog to digital conversion, 142
arrays, 36
ATOM language, 3

B
BCD, 50
boards

development, 5
prototyping, 6

breadboard, 13

C
constants, 42

D
DTMF, 126

F
files

including, 27
floating point, 60

H
hardware description, 4
hardware setup, 9

I
I2C, 107
IDE overview, 14
interrupts, 173

L
LCD, 159

M
memory

commands, 168
EEPROM, 34
program, 34
RAM, 33
registers, 33

models available, 5

N
number bases, 45
number types, 34

O
One wire, 112

P
pin 1, finding, 12
ports, 40
program

permanence, 19, 191
starting, 191

programming
multiple modules, 24, 191

project
designing, 7
simple, 17
traffic light, 20

pullups
internal, 119

pulses
generating, 134
measuring, 135

2 Basic Atom

Q
questions, 191

R
registers

accessing directly, 168
runtime environment, 4

S
software setup, 8
sound

generating, 138
stepper motor, 152
strings, 37
subroutines, 82

T
tables, 42
technical support, 2
timers, 178

V
variable modifiers, 38
variables, 35
video, NTSC, 164

W
warranty, i

X
X-10, 154

	Introduction
	What is a Basic Atom?
	This Manual
	On-line Discussion Forums
	Information Resources
	Updates
	Technical Support

	The Basic Atom
	Overview
	Software
	The ATOM Language
	How the ATOM Supports Software

	Hardware
	Different models of Basic Atom
	Available Development Boards
	Available Prototyping and Enclosure Boards

	Getting Started
	What You Will Need
	Follow These Steps
	Software Setup
	Hardware Setup
	Building Your Prototype or Project
	Running the IDE Software

	Let’s Try it Out
	Your First Basic Atom Project
	Writing the Program
	Troubleshooting
	Program Notes
	Permanency

	Making a Traffic Light
	The Traffic Light Program
	Program Notes
	Understanding the Build Window

	Programming Multiple Basic Atoms
	Summary

	Compiler Preprocessor
	Including Files
	#include
	Syntax
	Example

	Conditional Compiling
	#IF ... #ENDIF
	Syntax
	Example

	#IFDEF ... #ENDIF
	Syntax
	Example 1
	Example 1

	#IFNDEF ... #ENDIF
	#ELSE
	Syntax
	Example

	#ELSEIF
	Syntax
	Example

	#ELSEIFDEF, #ELSEIFNDEF
	Syntax
	Example

	Hardware, Memory, Variables, Constants
	Built-in Hardware
	RAM
	Registers
	EEPROM
	Program Memory
	Number Types
	Variables
	Defining variables
	Syntax
	Examples

	Variable Names
	Array variables (strings)
	Syntax to Define an Array
	Example

	Using Array Variables to Hold Strings
	Example

	Aliases
	Syntax
	Example

	Variable Modifiers
	Syntax
	Example 1
	Example 2
	Example 3
	List of Modifiers

	Pin Variables (Ports)
	Direction
	State
	Examples

	Constants
	Defining Constants
	Syntax
	Examples

	Constant Names
	Tables
	Syntax
	Examples

	Pin Constants
	Example

	Math and Functions
	Number Bases
	Math Functions
	Out of Range Values
	Unary Functions
	Example
	Real World Example
	Theoretical Example
	Example
	Example
	Example 1
	Example 2
	Example 3
	Example
	Syntax
	Example

	Binary Functions
	Example
	hexadecimal
	binary

	Bitwise Operators
	Using AND for masking

	Comparison Operators
	Logical Operators
	Example of Use
	Example
	Example

	Floating Point Math
	Floating Point Format

	Command Modifiers
	I/O Modifiers (HEX, DEC, BIN)
	
	Input
	Output
	Syntax
	Examples - Input
	Examples - Output

	I/O Modifier (STR)
	Input
	Output
	Syntax
	Examples – Input
	Example – Output

	Signed I/O Modifiers (SHEX, SDEC, SBIN)
	
	Input
	Output
	Syntax
	Examples - Input
	Examples - Output

	Indicated I/O Modifiers (IHEX, IBIN)
	
	Input
	Output
	Syntax
	Examples – Input
	Examples – Output

	Combination I/O Modifiers (ISHEX, ISBIN)
	
	Syntax
	Examples – Input
	Examples – Output

	Output Only Modifiers (REAL, REP)
	REAL
	Syntax
	Examples

	REP
	Syntax
	Example

	Special Note re. Output Modifiers
	
	Examples
	Using REP to Preset an Array

	Input-only Modifiers (WAITSTR, WAIT, SKIP)
	WAITSTR
	Syntax
	Example

	WAIT
	Syntax
	Example

	SKIP
	Syntax
	Example

	Core BASIC Commands
	Assignment and Data Commands
	= (LET)
	Syntax
	Examples

	CLEAR
	Syntax

	LOOKDOWN
	Syntax
	Examples

	LOOKUP
	Syntax
	Examples
	Summary of LOOKUP and LOOKDOWN

	SWAP
	Syntax
	Examples

	PUSH, POP
	Syntax
	Syntax

	Branching and Subroutines
	
	Syntax
	Examples
	Syntax
	Examples
	Syntax
	Examples

	EXCEPTION
	Syntax
	Examples

	IF... THEN... ELSEIF... ELSE... ENDIF
	Syntax – Simple Format
	Example
	Syntax – Extended Format
	Examples

	Looping Commands
	FOR... NEXT
	Syntax
	Examples

	DO... WHILE
	Syntax
	Examples

	WHILE... WEND
	Syntax
	Examples

	REPEAT... UNTIL
	Syntax
	Examples

	Input/Output Commands
	DEBUG
	Syntax
	Notes
	Example

	DEBUGIN
	Syntax
	Notes
	Example

	HSERIN
	Syntax
	Example
	Example

	HSEROUT
	Syntax
	Example

	HSERSTAT
	Syntax
	Examples

	SETHSERIAL
	Syntax
	Examples

	SERIN
	Syntax
	Notes - Baudmode
	Examples

	SEROUT
	Syntax
	Notes - Baudmode
	Examples

	SERDETECT
	Syntax
	Notes
	Examples

	I2CIN
	Syntax
	Notes
	Example

	I2COUT
	Syntax
	Notes
	Example

	OWIN, OWOUT
	Syntax
	Notes
	Example:

	SHIFTIN
	Syntax
	Notes
	Example

	SHIFTOUT
	Syntax
	Notes
	Examples

	Miscellaneous Commands
	END, STOP
	Syntax
	Notes

	HIGH, LOW, TOGGLE
	Syntax
	Examples

	INPUT, OUTPUT, REVERSE
	Syntax
	Notes
	Examples

	SETPULLUPS
	Syntax
	Notes:
	Examples

	PAUSE
	Syntax
	Notes
	Examples

	PAUSECLK
	Syntax
	Notes
	Examples

	PAUSEUS
	Syntax
	Notes

	NAP
	Syntax
	Notes
	Example

	SLEEP
	Syntax
	Notes
	Example

	Specialized I/O Commands
	Waveform I/O Commands
	DTMFOUT
	Syntax
	Notes
	Examples

	DTMFOUT2
	Syntax
	Notes
	Examples

	FREQOUT
	Syntax
	Notes
	Examples

	HPWM
	Syntax
	Notes
	Examples

	PWM
	Syntax
	Notes
	Examples

	PULSOUT
	Syntax
	Notes
	Examples

	PULSIN
	Syntax
	Notes
	Examples

	SOUND
	Syntax
	Notes
	Examples

	SOUND2
	Syntax
	Notes
	Examples

	SOUND8
	Syntax
	Notes
	Example

	Special I/O Commands
	ADIN
	Syntax
	Notes
	Examples

	BUTTON
	Syntax
	Notes
	Examples

	COUNT
	Syntax
	Examples

	RCTIME
	Syntax
	Notes
	Examples

	SERVO
	Syntax
	Notes
	Examples

	SPMOTOR
	Syntax
	Notes
	Examples

	X-10 Commands
	XIN
	Syntax
	Notes
	Examples

	XOUT
	Syntax
	Notes
	Examples

	LCD Commands
	LCDINIT
	Syntax
	Examples

	LCDREAD
	Syntax
	Examples

	LCDWRITE
	Syntax
	Notes
	Examples

	Video
	ENABLEVIDEO
	Syntax
	Notes
	Example

	Memory, Interrupts, Timers, etc.
	Memory Commands
	DATA
	Syntax
	Examples

	PEEK, POKE
	Syntax
	Notes
	Examples

	READ, WRITE
	Syntax
	Notes
	Examples

	READDM, WRITEDM
	Syntax
	Examples

	Interrupts
	ENABLE, DISABLE
	Syntax
	Examples

	SETEXTINT
	Syntax
	Examples

	ONINTERRUPT
	Syntax
	Examples

	ONPOR, ONBOR, ONMOR
	Syntax
	Examples

	RESUME
	Syntax
	Examples

	Timers
	SETCOMPARE
	Syntax
	Notes
	Examples

	SETCAPTURE
	Syntax
	Notes
	Examples

	GETCAPTURE
	Syntax
	Examples

	TIMEWATCHDOG
	Syntax
	Notes
	Example

	GETWATCHDOG
	Syntax
	Notes
	Example

	SETTMR0
	Syntax
	Notes
	Examples

	SETTMR1
	Syntax
	Notes
	Examples

	RESETTMR1
	Syntax
	Notes
	Examples

	SETTMR2
	Syntax
	Notes
	Examples

