

Revision 7.2.0.0

Warranty

Basic Micro warranties its products against defects in material and workmanship for a period of 90 days. If a defect is discovered, Basic Micro will at our discretion repair, replace, or refund the purchase price of the product in question. Contact us at support@basicmicro.com No returns will be accepted without the proper authorization.

Copyrights and Trademarks

Copyright© 1999-2004 by Basic Micro, Inc. All rights reserved. Basic Stamp I/II and Parallax are registered trademarks of Parallax Inc. MBasic, The Atom and Basic Micro are registered trademarks of Basic Micro Inc. Other trademarks mentioned are registered trademarks of their respective holders.

Disclaimer

Basic Micro cannot be held responsible for any incidental, or consequential damages resulting from use of products manufactured or sold by Basic Micro or its distributors. No products from Basic Micro should be used in any medical devices and/or medical situations. No product should be used in a life support situation.

Contacts

Web: http://www.basicmicro.com

Discussion List

A web based discussion board is maintained at http://www.basicmicro.com

Updates

In our continuing effort to provide the best and most innovative products, software updates are made available in the download section of the Basic Micro website at http://www.basicmicro.com

Contents

Introduction	12
What is the BasicATOM-Pro ?	
This Manual	
On-line Discussion Forums	
Updates	
Technical Support	
The BasicATOM-Pro	_
General Theory of Operation	
The ATOM-Pro Language	
How the ATOM-Pro Works	
Hardware The Basic's	
Line Labels RAM and Program Memory	
Variables	
Arrays	
Tables	
Aliases	
Variable Modifiers	
Pin Variables	
Constants	
Pin constants	
Preprocessor	
Preprocessor	
Including files	
Conditional compiling	
#IF constant expression	
#IFDEF name #IFNDEF name	
#LINDEF name	
#ELSEIFDEF name	
#ELSEIFNDEF name	
#ELSE	
#ENDIF	
Math	39
Numerical Types	40
Operator Precedence	40
Math Functions	
Bitwise Operators	
Comparison Operators	
	<u></u> 4≺

Floating Point Format	
Command Modifiers	
Modifier usage	46
Syntax	53
ADIN	54
Branch	-
Button	56
Clear	58
Count	
Debug	
Debugin	
Disable	
DoWhile	
DTMFout DTMFout2	
Enable	
Enable	
Enablehserial2 (ATOM-Pro Plus only)	
Enablehservo	
End	
Exception	71
ForNext	72
Freqout	73
GetHSERVO	
GosubReturn	
Goto	
High	
HPWM HSERIN	
HSERIN2 (ATOM-Pro Plus only)	
HSEROUT	80
HSEROUT2 (ATOM-Pro Plus only)	82
HSERVO	
I2Cin	
I2Cout	85
IfThenElseifElseEndif	86
Input	
Lcdinit	
Lcdread	
Lcdwrite	
LcdWrite Comand Table	
Let	
Lookdown	
Lookup	
Nap	
OnInterrupt	
1 -	

Output	100
OWIN	101
OWOUT	102
Pause	103
Pauseclk	104
Pauseus	105
PEEKPOKE	
Pulsin	
Pulsout	-
PushPop	
Pwm	
RCtime	
Read	
ReadDM	
RepeatUntil	
Resume	
Reverse	
Serdetect	
Serin	
SERIN Modes	
Serout	
SEROUT Modes	
Servo	122
Multiple Servo	
SetHserial	
SetHserial2 (ATOM-Pro Plus only)	
Shiftin	
Shiftout	127
Sleep	128
Sound	129
Sound2	130
Spmotor	131
	132
Śwap	133
Toggle	
WhileWend	135
Write	
WriteDM	
Reserved Words1	
Index1	58

Introduction

Introduction

What is the BasicATOM-Pro?

The BasicATOM-Pro is the next generation of the BasicATOM product line. It is a self contained microcontroller which is programmed using an advanced programming language modeled after BASIC, creating a cost effective and flexible way to program the BasicATOM-Pro hardware. The BasicATOM-Pro maintains the simplicity of Basic, but offers more power.

This Manual

This manual in general applies to the BasicATOM-Pro programming syntax. Certain information may only pertain to a given version of the product.

This manual documents the BasicATOM-Pro's programming language in depth . The main purpose of this manual is to teach the general syntax.

For more information about a particular device refer to its Data Sheet. All Data Sheets are available from the download section of the Basic Micro website. Http://www.basicmicro.com

We will continue to update and improve this manual. All updates will be made available for download from our web site at http://www.basicmicro.com.

On-line Discussion Forums

We maintain discussion forums at http://www.basicmicro.com in order to help you to connect with a wide range of related information and users. The discussion forums are free and will allow you to find information and help fast.

Updates

The BasicATOM-Pro software updates are available to new and current customers from the Basic Micro website download section.

Technical Support

Technical support is provided via the Basic Micro online Support system and the discussion forums at www.basicmicro.com. When technical support is required please fill out a Support Form in the Support section of our website. In order to assure a proper response please include a copy of the program you are having problems with, the hardware you are using, BasicATOM-Pro software version number, prototyping board and so on. By including this information with your e-mail, you can help us answer your questions much faster. Additional technical support is often provided by our forum moderators in the discussion boards at our website(http://www.basicmicro.com).

The BasicATOM-Pro

General Theory of Operation

The BasicATOM-Pro(here after refered to as the ATOM-Pro) is a tiny computer, or better known as a microcontroller. The ATOM-Pro was designed for use in a wide array of applications. The ATOM-Pro is built around the Hitachi H8/TINY family, which contains internal memory (2048 Bytes of RAM and 32K of FLASH program memory). Each ATOM has a built-in 5-volt regulator, a number of general-purpose I/O pins (TTL-level, 0-5 volts), commands for math and I/O pin operations and a serial port for in circuit programming.

The ATOM-Pro Language

The ATOM-Pro language is a simple, easy to learn platform based on BasicMicro's MBasic as well as some specialized instructions for the ATOM hardware.

How the ATOM-Pro Works

The ATOM-Pro's software brains are not permanently stored in the CPU. This has many advantages. By not storing the software brains on the ATOM-Pro, new commands and functionality can easily be added without the need for new hardware. Once a program is written the ATOM-Pro's software will compile what is needed to run correctly.

Since the software brain is not pre loaded, any program even the smallest will have a minimum size of about 500 bytes out of 32,000bytes regardless of the commands used. This method allows minimum command / function duplication. If you were to use the SERIN or SEROUT commands more than once in your program only minimal code would be added. The ATOM-Pro can use the same internal code to perform the task of sending or receiving serial data throughout the program. The same would apply to any other commands used in the program.

Small programs will increase in size rapidly until they reach about 3KB in size. The rate at which a programs size grows will slow as it grows simply because internal code will be used over again.

Hardware

There are several models of the ATOM-Pro available. For specific information refer to the data sheets regarding the version you are using. All data sheets can be downloaded from the downloads section of the Basic Micro website at http://www.basicmicro.com

The ATOM-pro is programmed at 115Kbps. This means that the ATOM-Pro interface software will not work on a computer that does not have serial ports capable of 115Kbps. Most computers that have been shipped since 1996 have serial ports capable of 115Kbps.

If you are using a laptop or new computer that does not have the traditional DB-9 serial connector the ATOM-Pro will program from a USB to serial adapter.

The ATOM-Pro Integrated Development Environment(IDE) software only works in a Windows environment. There is no DOS support and no plans for future DOS support.

The Basic's

Line Labels

In order to access different sections of code you must use line labels. Unlike the original Basic language, MBasic does not use line numbers.

example:

Loop: goto Loop

;This line repeats infinitely

The above goto statement jumps to a line label LOOP, which is in front of the GOTO statement. The above line will repeat infinitely. Line labels can not be duplicated or used as variable names once defined as a label.

RAM and Program Memory

RAM, or random access memory, is where variable values, and system values are stored. RAM is also used to store the return location of GOSUB statements. The ATOM-Pro has about 2000 bytes of user RAM available.

Program Memory is the memory where your program will reside. The size of available program memory will limit the size of your program. The more complicated the program, the more memory you will use. Most ATOM-Pro modules have 32kbytes of program memory(Some have 56kbytes of memory).

Variables

Variables are used to store temporary information in the program. They are created using the VAR keyword. Variables can be BITs, NIBBLEs, BYTEs, WORDs and LONGs. Before you can use a variable it must be defined.

example:		
Variable name:	Variable:	<u>Size:</u>
Temp	Var	Byte

The above states Temp is allocated a byte (8 bits) of ram

Variable names must start with a letter. They can contain letters, numbers and special characters. However they can not be the same name as ATOM-Pro reserved words or labels used in a program. The same variable name can not be defined twice. The ATOM-Pro does not distinguish between upper and lower case, so the name "TEMP" is equivalent to "temp". The maximum character length can be up to 1024 characters.

Throughout this manual and when dealing bits, bytes, words ,longs and floats will be referred to often. The following is a quick break down of the values these different variable types can hold:

<u>Type</u>	<u>Bit Size</u>	<u>Range</u>
Bit	1	1 or 0
Nib	4	0 to 15
Byte	8	0 to 255
SByte	8	-127 to +128
Word	16	0 to 65535
SWord	16	-32767 to +32768
Long	32	0 to 4,294,967,295
SLong	32	-2147483647 to +2147483648
Float	32	+-2^-126 to 2^127

Some examples of defined variables:

DOG	Var	Bit	;0 or 1
POST	Var	Nib	;0 to 15
LOG	Var	Byte	;0 to 255
STICK	Var	Word	;0 to 65535
TREE	Var	Long	;0 to 4,294,967,295

Arrays

As your programs begin to perform more complex tasks, there will be times when you want a variable to hold many values. An Array is a structure that can store multiple values of the same type.

example:

Temp var Word(5)

The number 5 in parenthesis shows the variable temp has 5 cells. Once the array has been defined, each cell can be accessed by its number:

 $\begin{array}{l} \text{Temp}(0) \,=\, 10 \\ \text{Temp}(1) \,=\, 25 \\ \text{Temp}(2) \,=\, 45 \\ \text{Temp}(3) \,=\, 55 \\ \text{Temp}(4) \,=\, 65 \end{array}$

The above will assign the value of 10 to the first cell in the 5 cell array, 25 to the second cell and so on. Using arrays can simplify your program as shown below:

Temp Cntr	Var Var	Byte(5) Byte	variable temp now has 5 cells;
For Cntr = Temp(0	0 to 4 Cntr) = (;Set each cell to Cntr + 2
Next			

The above code example will load each array, 0 to 4 (5 cells) with the array number + 2. To do this manually:

Temp(0) = 2 Temp(1) = 3 Temp(2) = 4 Temp(3) = 5Temp(4) = 6

Tables

Label TableType Data, Data,Data

Label is the name of the table used to call or access the table. TableType is the size of the table data.

Tables Types: ByteTable(8bit data) WordTable(16bit data) LongTable(32bit data) FloatTable(floating point data)

Data: the constant value or constant expression to store in the table.

explanation:

Tables are used to store constant data(doesn't change after programming) which can be accessed like an array variable.

example:

FirstMenu ByteTable "Enter An Option",0

FirstMenu(0) equals "E" FirstMenu(1) equals "n"

note:

The ending NULL(0) is usefull when using tables with STR modifiers.

Aliases

Aliases are alternate names for defined variables. As an example:

DOG Var Byte ;DOG is assigned as an 8 bit variable (Byte) CAT Var DOG ;CAT now points to the variable DOG

In the above example if DOG were equal to 10, any time the variable CAT was accessed it would equal 10 since it points to the same RAM location. Aliases are a good idea when you want to use a temporary variable with a name that suits its function.

Variable Modifiers

Variable modifiers are used to access only parts of a variable.

In example 1 we show how to alias a variable(point a new variable at the data of a previously defined variable) using a variable modifier. In example 1 the "highbyte" modifier is used. This points the aliased variable, "Cat", at the high byte(bits 8-15) of "Dog".

example 1: Dog Var Word Cat Var Dog.HighByte

In example 2 we show how to access parts of variables on the fly. In this example "Cat" is being loaded with a value from "Dog". Here we are geting the second byte of the two byte(word) variable, "Dog", and storing it in "Cat" by using the "Byte1" modifier.

example 2: Dog Var Word Cat Var Byte

Cat = Dog.Byte1

The table below shows all the different variable modifiers that can be used:

Modifier	Create alias to
LOWBIT	bit 0 of variable
BITO	bit 0 of variable
BIT1	bit 1 of variable
BIT2	bit 2 of variable
BIT3	bit 3 of variable
BIT4	bit 4 of variable
BIT5	bit 5 of variable
BIT6	bit 6 of variable
BIT7	bit 7 of variable
BIT8	bit 8 of variable
BIT9	bit 9 of variable
BIT10	bit 10 of variable
BIT11	bit 11 of variable
BIT12	bit 12 of variable
BIT13	bit 13 of variable
BIT14	bit 14 of variable
BIT15	bit 15 of variable
BIT16	bit 16 of variable
BIT17	bit 17 of variable
BIT18	bit 18 of variable
BIT19	bit 19 of variable
BIT20	bit 20 of variable
BIT21	bit 21 of variable
BIT22	bit 22 of variable
BIT23	bit 23 of variable
BIT24	bit 24 of variable
BIT25	bit 25 of variable
BIT26	bit 26 of variable
BIT27	bit 27 of variable
BIT28	bit 28 of variable
BIT29	bit 29 of variable
BIT30	bit 30 of variable
BIT31	bit 31 of variable

HIGHBIT	highest bit of variable
Modifier	Create alias to
LOWNIB	nibble 0 of variable
NIB0	nibble 0 of variable
NIB1	nibble 1 of variable
NIB2	nibble 2 of variable
NIB3	nibble 3 of variable
NIB4	nibble 4 of variable
NIB5	nibble 5 of variable
NIB6	nibble 6 of variable
NIB7	nibble 7 of variable
HIGHNIB	highest nibble of variable
LOWBYTE	byte 0 of variable
BYTE0	byte 0 of variable
BYTE1	byte 1 of variable
BYTE2	byte 2 of variable
BYTE3	byte 3 of variable
HIGHBYTE	highest byte of variable
LOWWORD	word 0 of variable
WORD0	word 0 of variable
WORD1	word 1 of variable

Note: Variable modifiers can also be used in code statements example:

word 1 of variable

if myvar.bit0 = 1 then dosomething

HIGHWORD

Pin Variables

Pin variables are just like any other variables except that the states of the individule bits in the variables are the states/directions of the corresponding pin.

DIRE a 32bit variable accessing the directions of P0-P31. DIRS a 16bit variable accessing the directions of P0-P15. DIRES a 16bit variable accessing the directions of P16-P31. DIRL an 8bit variable accessing the directions of P0-P7. DIRH an 8bit variable accessing the directions of P8-P15. DIREL an 8bit variable accessing the directions of P16-P23. DIREH an 8bit variable accessing the directions of P24-P31. DIRA a 4bit variable accessing the directions of P0-P3. DIRB a 4bit variable accessing the directions of P4-P7. DIRC a 4bit variable accessing the directions of P8-P11. DIRD a 4bit variable accessing the directions of P12-P15. DIREA a 4bit variable accessing the directions of P16-P19. DIREB a 4bit variable accessing the directions of P20-P23. DIREC a 4bit variable accessing the directions of P24-P27. DIRED a 4bit variable accessing the directions of P28-P31. DIR# (# is any number from 0 to 31) is a variable that accesses the direction of P0 - P31 individually.

INE a 32bit variable accessing the states of P0-P31. INS a 16bit variable accessing the states of P0-P15. INES a 16bit variable accessing the states of P16-P31. INL an 8bit variable accessing the states of P0-P7. INH an 8bit variable accessing the states of P8-P15. INEL an 8bit variable accessing the states of P16-P23. INEH an 8bit variable accessing the states of P24-P31. INA a 4bit variable accessing the states of P0-P3. INB a 4bit variable accessing the states of P4-P7. INC a 4bit variable accessing the states of P8-P11. IND a 4bit variable accessing the states of P12-P15. INEA a 4bit variable accessing the states of P16-P19. INEB a 4bit variable accessing the states of P20-P23. INEC a 4bit variable accessing the states of P24-P27. INED a 4bit variable accessing the states of P28-P31. IN# (# is any number from 0 to 31) is a variable that accesses the state of P0 - P31 individually.

OUTE a 32bit variable accessing the states of P0-P31. OUTS a 16bit variable accessing the states of P0-P15. OUTES a 16bit variable accessing the states of P16-P31. OUTL an 8bit variable accessing the states of P0-P7. OUTH an 8bit variable accessing the states of P8-P15. OUTEL an 8bit variable accessing the states of P16-P23. OUTEH an 8bit variable accessing the states of P24-P31. OUTA a 4bit variable accessing the states of P0-P3. OUTB a 4bit variable accessing the states of P4-P7. OUTC a 4bit variable accessing the states of P8-P11. OUTD a 4bit variable accessing the states of P12-P15. OUTEA a 4bit variable accessing the states of P16-P19. OUTEB a 4bit variable accessing the states of P20-P23. OUTEC a 4bit variable accessing the states of P20-P23. OUTEC a 4bit variable accessing the states of P24-P27. OUTED a 4bit variable accessing the states of P28-P31. OUTED a 4bit variable accessing the states of P28-P31. OUT# (# is any number from 0 to 31) is a variable that accesses the state of P0 - P31 individually.

IN and OUT pin variables are interchangable. Either one can be used to read or write a pin state. The two different names are provided to make code more easy understood.

Constants

Constants are similar to variables except their values are set at compile time and can not be changed. When creating a program it can be beneficial to use constants for certain values that don't change.

example:

Meter	CON	1	;Meter = 1
Centimeter	CON	Meter * 100	;Centimeter = 100
Millimeter	CON	Centimeter * 10	;Millimeter = 1000

In the above example "centimeter" and "millimeter" values were derived from the constant "meter". There are a 100 centimeters in a meter and a 1000 millimeters in a meter.

Pin names are also constants so they can be used in the following way:

RedLed Con P0 GreenLed Con P1

Main High RedLed High GreenLed Goto Main

RedLed and GreenLed are now constants that point to pin 0 and pin 1. When writing complex programs it may be beneficial to use constants as shown above.

Pin constants

Pin constants are simple predefined constants for the different pin numbers on the ATOM-Pro. All ATOM-Pro modules/boards have 16 common I/O pin names. See specific ATOM-Pro module datasheets for each modules extended list of pin names.

P0 = 0P1 = 1P2 = 2P3 = 3P4 = 4P5 = 5P6 = 6P7 = 7P8 = 8 P9 = 9P10 = 10P11 = 11P12 = 12P13 = 13P14 = 14P15 = 15

Also each ATOM-Pro module has two specialized pins(S_IN and S_OUT) for programming and for use as serial input/output.

Preprocessor

Preprocessor

The ATOM-Pro compiler's preprocessor commands are used to include external files and to conditional compile sections of code.

Including files

By using the *#include* preprocessor directive the user can modularize their program. The *#*include directive acts like a compile time paste. The text in the file specified in the *#*include directive will be placed into the users program at the location of the directive at compile time.

For example, if you have a basic file called "myfuncs.bas" you can add the code from this file to your compiled program by using the #include directive like this:

main

gosub myfunc1 ;myfunc1 is defined in myfuncs.bas goto main

#include "myfuncs.bas"

This assumes that the myfuncs.bas file is in the same directory as the main program. If the included file is not in the same directory you must include the full or partial path name.

For example, if "myfuncs.bas" is in a sub directory of the directory the main program is in you can:

#include "mysubdir\myfuncs.bas"

Or you can specify the full path:

#include "c:\mybasprogs\mysubdir\myfuncs.bas"

Conditional compiling

Conditional compiling is used when you don't always want some sections of your code to be compiled into the program. Using the conditional directives you can specify whether certain lines of code are compiled into your program or not based on whether something was previously defined.

#IF constant expression

The #IF directive is used to specify user code that will only be compiled in the program if the constant expression is true(ie non zero).

```
Example:
#IF mycon = 120
...code...
#ENDIF
```

#IFDEF name

The #IFDEF directive is a special case of the #IF directive. Its argument must be a name(ie label,variable or constant name). If the name was defined previously in the program the code inside the directive will be compiled.

Example:

mycon con 10 #IFDEF mycon ...code... #ENDIF

#IFNDEF name

The #IFNDEF directive is a special case of the #IF directive. Its argument must be a name(ie label,variable or constant name). If the name was not defined previously in the program the code inside the directive will be compiled.

```
Example:
#IFNDEF mycon
...code...
#ENDIF
```

#ELSEIF constant expression

The #ELSEIF directive is used to allow multiple conditions easily

```
Example:

#IF mycon = 120

...code...

#ELSEIF mycon = 130

..code..

#ELSEIF mycon = 140

..code..

#ENDIF
```

#ELSEIFDEF name

The #ELSEIFDEF directive is used to allow multiple conditions easily

Example: #IFDEF mycon1 ...code... #ELSEIFDEF mycon2 ..code.. #ELSEIFDEF mycon3 ..code.. #ENDIF

#ELSEIFNDEF name

The #ELSEIFNDEF directive is used to allow multiple conditions easily

```
Example:
#IFNDEF mycon1
...code...
#ELSEIFNDEF mycon2
..code..
#ELSEIFNDEF mycon3
..code..
#ENDIF
```

#ELSE

The #ELSE directive can be used with any #IF directive. When the #IF directive is false the code inside the #ELSE directive will be added to the compiled program instead.

```
Example:
#IF mycon = 10
...code...
#ELSE
..code..
#ENDIF
```

#ENDIF

All conditional compiling directives must end with an #ENDIF.

Math

Math

Numerical Types

Numbers can be written in different ways. Binary numbers are written using only 0 and 1. Hexadecimal uses characters '0' to 'F'. Binary and hexadecimal numbers must have an indicator.

1234 or d'1234'	: Standard Decimal number
\$1F2A or 0x1F2A	: Hexadecimal notation
%1001	: Binary notation

The character \$(string) or "0x" indicates Hexadecimal and the percentage sign % indicates binary data. These special characters must be used in order to let the Atom know what numerical types they are.

Operator Precedence

The ATOM-Pro uses standard algebraic syntax. In the ATOM-Pro 2+2*5/10 = 3. This is because in the ATOM-Pro each math operator has a precedence. The multiply and divide operators have equal precedence. In the above calculation 2*5 will be calculated first (equaling 10), then the divide by 10 (equals 1), then the addition of 2 (equaling 3). You can use parenthesis to force specific orders (i.e.: ((2+2)*2)/2 would calculate the value the way the Basic Stamp does(ie left to right with no precedence).

Order: Operation:

- 1st NOT, ABS, SIN, COS, (NEG), DCD, NCD, SQR, RANDOM, TOINT, TOFLOAT, BIN2BCD, BCD2BIN, ~(Binary NOT), !(Binary NOT), NOT(Logical NOT), FSQRT, FSIN, FCOS, FTAN, FASIN, FACOS, FATAN, FSINH, FCOSH, FTANH, FATANH, FLN, FEXP
- 2nd Rev, Dig
- 3rd MAX, MIN
- 4th *, **, */, /, //
- 5th +, -
- 6th <<, >>
- 7nd <, <=, =, >=, >, <>
- 8th &, |, ^, &/, |/, ^/
- 9rd And, Or, Xor

Math Functions

The following is a list of math functions the ATOM-Pro can perform.

UNARY Commands

-(NEG) expression	Negate value
ABS expression	Absolute value
SIN expression	sine of value(0-255)
COS expression	cosine of value(0-255)
DCD expression	2 to the nth power(n = value)
NCD expression	smallest power of 2 that is GREATER
	than value.
SQR expression	square root of value.
BIN2BCD expression	Integer to Packed BCD format
BCD2BIN expression	Packed BCD to integer.
RANDOM expression	Generate Rangom value with seed
	expression
NOT expression	Logical inverse

Floating Point UNARY Commands

TOINT expression	Converts a Floating Point value to an Integer value.
TOFLOAT expression	Converts an Integer value to a Float ing Point value.
FSQRT expression	Square Root
FSIN expression	Sin(range: PI/2 to -PI/2)
FCOS expression	Cos(range: PI/2 to -PI/2)
FTAN expression	Tan(range: PI/2 to -PI/2)
FASIN expression	ArcSin(range: 1 to -1)
FACOS expression	ArcCos(range: all values)
FATAN expression	ArcTan(range: 1 to -1)
FSINH expression	Hyperbolic Sin(range: 1.13 to -1.13)
FCOSH expression	Hyperbolic Cos(range: 1.13 to -1.13)
FTANH expression	Hyperbolic Tan(range: 1.13 to -1.13)
FATANH expression	Hyperbolic ArcTan
	(range: 1.13 to -1.13)
FLN expression	Natural Log(range: 9.58 to 0.1)
FEXP expression	Exponent(range: 1.13 to -1.13)

BINARY Commands

exp1	+ exp2
exp1	- exp2
exp1	* exp2
exp1	** exp2
exp1	*/ exp2
exp1	/ exp2
exp1	// exp2
exp1	MAX exp2
exp1	MIN exp2
exp1	DIG exp2
exp1	REV exp2

Add exp1 to exp2 Sub exp2 from exp1 Mulitply exp1 by exp2 Get high 32bits of a multiply Fractional Multiply Divide exp1 by exp2 Mod exp1 by exp2 smaller of the two expressions. larger of the two expressions. digit of exp1 at exp2 position. reverses exp2 bits of exp1 starting with LSB

Bitwise Operators

Bitwise operators are commands that directly effect the bits of a value.

Bitwise operators

exp1 & exp2	And exp1 with exp2
exp1 exp2	Or exp1 with exp2
exp1 ^ exp2	XOr exp1 with exp2
exp1 >> exp2	Shift exp1 right by exp2
exp1 << exp2	Shift exp1 left by exp2
~(NOT) expression	Invert exp1
!(NOT)	Invert exp1

Comparison Operators

Comparison operators are used when comparing two or more values. Examples are the IF...THEN and LOOKDOWN commands.

Compare Op.	Description
=	Equal
<>	Not Equal
<	LessThan
>	GreaterThan
<=	LessThan Equal
>=	GreaterThan or Equa

Logical Operators

Logical operators are slightly different in use than comparison operators. When an IF...THEN statement contains more than one comparison you must combine them using a logical operator. The example below illustrates this:

If (Variable < 100) AND (Variable > 10) Then Label

As you can see from the example if BOTH are true then the program jumps to the label.

Logical Op.	Description
AND	Logical AND
OR	Logical OR
XOR	Logical Exclusive OR
NOT	Logical NOT

Floating Point Format

The floating point math the ATOM-Pro uses differs some what from the normal IEEE 754 floating point standard.

```
IEEE format:

Bit 31 = Sign bit(S)

Bit 30-23 = Exponent(E)

Bit 22-0 = Mantissa(M)

ATOM-Pro format

Bit 31-24 = Exponent(E)

Bit 23 = Sign bit(S)

Bit 22-0 = Mantissa(M)

32.31.30.29.28.27.26.25.24.23.22.21.20...0

IEEE S E E E E E E E E M M M M...M

ATOM E E E E E E E E S M M M M...M
```

Note: All variables that will contain a floating point number must be a FLOAT type variable.

Command Modifiers

Modifier usage

Command modifiers can be used to modify/enhance data in a command directly. Modifiers can be used with any commands that show {Modifier or Mods} in their syntax.

I/O Modifiers

- dec Decimal Value
- hex Hexadecimal Value
- bin Binary Value
- str Input or Output Array Variables

Signed I/O Modifiers

- sdec Decimal Value
- shex Hexadecimal Value
- sbin Binary Value

Indicated I/O Modifiers

- ihex Hexadecimal Value
- ibin Binary Value

Combination I/O Modifiers

ishex Hexadecimal Value

isbin Binary Value

Output Only Modifiers

- rep Output character *n* times
- real Output Floating point numbers

Input Only Modifiers

waitstr Waits until values received match array

- wait Waits util values received match string of values
- skip Skip *n* values

HEX - DEC - BIN

desc(input):

Convert input ASCII characters to binary. Input must be in HEX,DEC or BIN format

desc(output):

Convert a binary value to ASCII characters in HEX,DEC or BIN format

syntax:

modifier{#1} arg{\#2}

#1: optional number that sets a maximum number of digits to pass#2: optional value that sets a minimum number of digits to pass

example:

command args,[dec2 1234\2] ;output "34"

SDEC - SHEX - SBIN

desc(input):

Convert input ASCII characters to binary. Input must be in HEX,DEC or BIN format. "-" is a valid sign character.

desc(output):

Convert a binary value to ASCII characters in HEX,DEC or BIN format with sign("-") if negative

syntax:

modifier{#1} arg{\#2}

#1: optional number that sets a maximum number of digits to pass#2: optional value that sets a minimum number of digits to pass

example:

command args,[sdec -1234] ;output "-1234"

IHEX - IBIN

desc(input):

Convert input ASCII characters to binary. Input must be in HEX,DEC or BIN format. Input characters are ignored until a valid indicator character is received

desc(output):

Convert a binary value to ASCII characters in HEX,DEC or BIN format. An indicator character is passed first.

indicator chars: HEX: "\$" BIN: "%"

syntax:

modifier{#1} arg{\#2}

#1: optional number that sets a maximum number of digits to pass#2: optional value that sets a minimum number of digits to pass

example:

command args,[ihex \$ABCD] ;output "\$ABCD"

ISHEX - ISBIN

desc(input):

Convert input ASCII characters to binary. Input must be in HEX,DEC or BIN format with optional sign character("-"). Input characters are ignored until a valid indicator character is received

desc(output):

Convert a binary value to ASCII characters in HEX,DEC or BIN format. An indicator character is passed first. If the value is negative a sign character is pased next("-").

indicator chars:

HEX: "\$" BIN: "%"

syntax:

modifier{#1} arg{\#2}

#1: optional number that sets a maximum number of digits to pass#2: optional value that sets a minimum number of digits to pass

example:

command args,[ihex -\$ABCD] ;output "\$-ABCD"

REAL

desc(output only):

Convert a Floatingpoint value to ASCII characters. Sign and decimal point are handled.

syntax:

modifier{#1} arg{#2}

#1: optional number that sets the maximum digits to pass before the decimal point.(Default: 10)

#2: optional value that sets the maximum digits to display after the decimal point.(Default: 10)

example:

command args,[real 1.1234] ;output "1.1234000000"

RFP

desc(output only):

Repeat a character *n times*

syntax:

modifier arg n

example:

command args, [rep "a"\20]; output the letter "a" 20 times

STR

desc(input):

Receive a variable number of values and store in a variable array

desc(output):

Output the elements of a variable length array.

syntax:

str value{\length{\eol}}

\length: optional value that sets the maximum number of values to pass

\eol: optional value that sets the end of line(EOL) character to stop passing data on. \length is required when using \eol

example:

command args,[str myarray\10\"c"]

;output upto 10 ;values in myarray. :Stop passing values :on "c".

WAITSTR

desc(input only):

Receive value until a continous group matches string

syntax:

waitstr sting\length{\eol}

length: optional value that sets the maximum number of values to match

\eol: optional value that sets the end of line(EOL) character to stop matching data on. *length* is required when using \eol

example:

command args,[waitstr string\10\"c"]

WAIT

desc(input only):

Receive value until a continuous group matches constant string

syntax:

wait("my constant string")

example:

command args,[wait("My string")]

SKIP

desc(input only): Skip specified number of values

syntax:

skip count

example:

command args,[skip 10]

Syntax

Syntax

ADIN

ADIN pin,variable Convert Analog signal on *pin* and store value in *variable*.

Pin: a constant or variable that specifies the pin number. The specified pin number must be cabable of A/D conversion.

Variable: a word or long size variable

Explanation

The ADIN command is used to convert an analog voltage(0-5v) into a number from 0 to 1023. The value is stored in *variable*.

Branch

BRANCH index, [Label1,...LabelN] Go to the Label specified by index.

Index is an expression that points to the label to jump to in the list of labels in the Branch command.

Label1,...LabelN a list of labels.

Explanation

The Branch command allows the program to jump to different locations based on a variable index. BRANCH is used to simplify code like this:

IF temp = 0 THEN dog	;temp =0; go to label dog
IF temp = 1 THEN cat	;temp =1: go to label cat
IF temp = 2 THEN mouse	;temp =2: go to label mouse

into code like this:

BRANCH temp, [dog, cat, mouse]

If the index is greater than the number of Labels in the list then the command exits and program execution continues on the next line.

Button

BUTTON pin, pressedstate, repeatdelay, repeatrate, workbyte, logicstate, label

Reads the pin, debounces the button input, performs an auto-repeat if activated, and branches to a label if logical state is active. The Button may be activated in either a low state or a high state based on the logicalstate.

Pin is an expression of the pin number the button/switch is connected to. The pin will be made an input.

PressedState is an expression(0 or 1) which specifies the voltage when the button is pressed(Gnd or Vdd).

RepeatDelay is an expression(0–255) which sets the functions of the button command. If equal to 0 debounce and auto-repeat are disabled. If equal to 255, BUTTON executes a debounce(one loop), but auto-repeat is disabled. All other values(1-254) are the number of program loops the button command must execute before autorepeat begins.

RepeatRate is an expression(0–255) of the number of program loops BUTTON executes before each repeat

WorkByte is a work space variable used internally by the BUTTON command to store current loop counts for use when debouncing, delaying, and auto-repeating. This variable must be unique inside the program loop BUTTON is running in.

Logicalstate is an expression(0 or 1) which determines the logical state the button must be in for a branch to occure(pressed or not pressed).

Label is the label of the location in the user program to jump/ branch to when the targetstate is triggered.

Explanation

The BUTTON command works much like a key on a PC keyboard. When a switch/button is closed or opened(depending on command arguments), the BUTTON command will jump/branch to the specified label. The BUTTON command also allows the user to specify the delay before auto-repeating and how fast to auto-repeat(if at all).

DEBOUNCE

When a switch or button contact is closed the mechanical connections may bounce. This can cause a period where the state of the switch or button can not acurately be determined. Debouncing the input rereads the input state one program loop after the first read of the pin the switch/button is connected to inorder to confirm the state of the input.

Clear

CLEAR Clear user RAM.

Explanation

The Clear command will clear (Set to 0's) all of the user ram. User ram is set aside space for all the variables a user program will use.

Count

COUNT pin, period, variable

Count the number of cycles (0-1-0 or 1-0-1) on the specified pin during period number of milliseconds and store that number in variable.

Pin is an expression of the I/O pin number to use. This pin will be placed into input mode.

Period is an expression(1 to 4294967296) of the time in millisec onds during which to count.

Variable is a variable where the count will be stored.

Explanation

COUNT checks the state of PIN in a tight loop and will count the low to high transitions. COUNT is ideal for figuring out frequency of certain waves or timings based on an incoming signal.

Debug

DEBUG [{Options} item, {{Options} item}] Sends values of specified variables or constants to the debug watch window.

Options are DEC, HEX, BIN or REAL. These modifiers will convert Item to DEC = Decimal, HEX = Hexadecimal, BIN = Binary digits or REAL = Value.

Item can be a constant or variable. There is no limit to the amount of items used other than program memory.

Explanation

The DEBUG command will send any values stored in a given variable or constant to the debug watch window. The DEBUG command is also linked with the IDE's In Circuit Debugger (Refer to the *In Circuit Debugger* section of the BasicMicro IDE users guide). Variables used by themselves are automatically truncated to character size.

Debugin

DEBUGIN [(Options) item]

Receives byte values from the IDE DEBUG window and stores them in a specified variable on the Atom.

Options are DEC, HEX, BIN or REAL. These modifiers will convert Item to DEC = Decimal, HEX = Hexadecimal, BIN = Binary digits or REAL = Value.

Item can only be a byte variable. It stores the received byte value in the specified variable.

Explanation

The DEBUGIN command allows you to send data to your program onthe-fly from the IDE DEBUG Watch Window and stores the data in the specified variable. This can be useful for adjusting a program on the fly.

Disable

DISABLE {intname}

Disable the specified interrupt. If no interrupt is specified disable all interrupts.

IntName is the name of the interrupt to disable. See the ONINTERRUPT directive for a list of interrupt names.

Explanation

DISABLE turns off the spcified interrupt by clearing its interrupt enable bit. Any other register settings remain the same. If no interrupt is specified the global interrupt enable bit is cleared.

Do...While

Douser code.... While expression

Repeat a group of commands while expression is true

Expression is any combination of variables, constants, mathmatical and/or logic operators

Explanation

Execute a group of commands while some expression is true. DO...WHILE will run at least once. A True value is any value other than zero(0).

DTMFout

DTMFOUT pin,{playtime,pausetime,}[,key...] Generate dual-tone, multifrequency tones for DTMF devices. The tones a touch tone telephone make are examples of DTMF tones.

Pin is an experssion of the I/O pin number to use. This pin will be set to an output during tone generation. After tone generation is complete, the pin is left as an input.

Playtime is an optional expression(0 to 65535) of the time to play the tone in milliseconds. If playtime is not used DTMFout defaults to 200 ms on.

Pausetime is an optionalexpression(0 to 65535) of the length of silence after each tone. If pausetime is not used DTMFout de faults to 50 ms. If playtime is used then pausetime is required.

Key is a variable or constant specifying the DTMF key to send.

Key #	Telephone Key
0 to 9	Digits 0 - 9
10	Digit *
11	Digit #
12—15	Fourth column tones A through D

Explanation

DTMF tones are a simple form of analog/digital conversion used to communicate digital commands via an analog signal. These signals are ussually used to dial a telephone. For all intents the DTMFOUT command acts as a telephone keypad. DTMF tones are generated using pulse width modulation to digitally create the equivilent of two sine wave waveforms at different frequencies. Due to the PWM generation of the tones high-frequency noise will be present on the output. This noise must be filtered with a lowpass filter circuit.

DTMFout2

DTMFOUT2 pin1 \ pin2,{playtime,pausetime,}[,key...] Uses two pins to generate dual-tone, producing a cleaner signal (i.e., telephone "touch" tones).

Pin1 / **Pin2** are expressions for the I/O pins to use. These pins will be set as outputs during tone generation. After tone genera tion is complete, the pins are set to inputs.

Playtime is an optional expression(0 to 65535) of the time to play the tone in milliseconds. If playtime is not used DTMFout defaults to 200 ms on.

Pausetime is an optionalexpression(0 to 65535) of the length of silence after each tone. If pausetime is not used DTMFout de faults to 50 ms. If playtime is used then pausetime is required.

Key is a variable or constant specifying the DTMF key to send.

Tone #	Telephone Key
0 to 9	Digits 0 - 9
10	Digit *
11	Digit #
12—15	Fourth column tones A through D

Explanation

The DTMFOUT2 command follows the same basic format as DTMFOUT (refer to DTMFOUT), except it generates the multifrequency tones on two pins. These two pins can be tied together using a 390 ohms resistor. The tones generated by DTMFOUT2 are made of square wave frequencies. This produces clearer and louder tones but some DTMF decoders may have trouble with it

Enable

EnABLE {intname}

Enable the specified interrupt. If no interrupt is specified enable all interrupts.

IntName is the name of the interrupt to disable. See the ONINTERRUPT directive for a list of interrupt names.

Explanation

ENABLE turns on the spcified interrupt by setting its interrupt enable bit. Any other register settings remain the same. If no interrupt is specified the global interrupt enable bit is set

Enablehserial

ENABLEHSERIAL Enable the hardware serial system(SCI3)

Explanation

ENABLEHSERIAL is a compile time directive that tells the compiler to add support for the hardware serial system(SCI3)

Enablehserial2 (ATOM-Pro Plus only)

ENABLEHSERIAL2 Enable the hardware serial system(SCI3_2)

Explanation

ENABLEHSERIAL2 is a compile time directive that tells the compiler to add support for the hardware serial system(SCI3_2). This directive is only supported by the ATOM-Pro Plus processors.

Enablehservo

ENABLEHSERVO pinmask, minpulse, maxpulse, resfresh Enable the hardware servo control system

Pinmask is a constant that specifies a mask for which I/O pins will be taken over by the HSERVO system.

Minpulse is a constant of the minimum pulse width in useconds of the servo control pulses

Maxpulse is a constant of the maximum pulse width in useconds of the servo control pulses

Refresh is a constant of the refresh rate in milliseconds.

Explanation

ENABLEHSERVO is a compile time directive that tells the compiler to add support for the hardware servo control system. The HSERVO system uses the TimerW(or TimerZ0 in ATOM-Pro Plus) to produce interrupt driven signals for up to 32 servos. The pinmask is a 32bit binary number where each bit specifies whether that particular pin is handled by the hardware servo system or by user code. A bit set as logical 1 enables that pin for the hardware servo system.

Example:

ENABLEHSERVO %11110000,200,2200,20

In the example pins P4-P7 are handled by the hardware servo system. The minimum pulse width is 200us and the maximum pulse width is 2200us giving a total swing of 2000us on the servo. The refresh rate of the servos is every 20ms.

End

END Ends the program.

Explanation

END will stop the program until reset. All I/O lines will remain at their last know state.

Exception

EXCEPTION label

Clears the return stack and jumps to label.

Label is any root lable. A root label is any label not defined in a gosub routine.

Explanation

Exception's puprose is to jump out of nested subroutines(ie GOSUBs). Using a goto to jump out of a GOSUB will leave a return value on the stack and eventually may cause the stack to overflow. EXCEPTION works just like a GOTO except it clears any return values from the stack.

For...Next

FOR variable = startVal to endVal {STEP stepVal} ... NEXT

Create a repeating loop that executes the program lines between FOR and NEXT, increment or decrement the variable according to stepVal, until the value of the variable passes the endVal.

Variable is where to store the current count.

StartVal is an expression of the initial value of the variable.

EndVal is an expression of the end value of the variable. When the value of the variable passes endVal execution stops and the program goes to the instruction after Next.

StepVal is an optional expression of the amount variable increases or decreases with each trip through the FOR/ NEXT loop. Negative values for StepVal will decrement and Positive values will increment.

For counter = 20 to 1 step -1 ; this will decrement -1

For counter = 1 to 20 step 1 ; this will increment +1

Explanation

The FOR...NEXT loop will allow your program to execute a series of instructions for a specific number of repetitions. By default, the counter variable is incremented by 1 each time through the loop. It will continue to loop until the result of the counter is outside of the range set by StartValue and EndValue.

Note: The variable type must match the Start,End and Step value types. If Floating Point numbers are used for Start,End and Step, variable MUST be a FLOAT type variable.

Freqout

FREQOUT pin, duration, freq1{,freq2} Generates one or two tones for a specified duration.

Pin is an expression of the I/O pin number to use. This pin will be put into output mode during generation of tones and left in that state after the instruction is completed.

Duration is an expression of the length in milliseconds of the tone(s).

Freq1 is an expression of the frequency(Hz, 0 to 32767) in hertz of the first tone.

Freq2 is an expression of the frequency(0 to 32767 Hz) in hertz of the optional second tone

Explanation

FREQOUT generates one or two sine waves using a pulse-width modulation algorithm. The FREQOUT command can be used to play tones through a speaker or audio amplifier. FREQOUT can also be used to play simple songs. A filtering circuit is required with most speakers.

GetHSERVO

GETHSERVO pin,position{,idle} Get the current position of the specified servo. Optionally get

whether the servo is idle or not.

Pin is an expression of the I/O pin number to check servo position on.

Position is a variable where GETHSERVO will store the current position of the specified servo

Idle is an optional variable where GETHSERVO will store the current state of the servo. A value of \$FFFFFFF(ie Non-Zero) means the servo is idle(at it's final position)

Explanation

Gethservo is used to determine what position a servo is at and whether it has finished moving to it's final position.

Gosub...Return

GOSUB Label Store the address after GOSUB, then go to the point in the program specified by Label.

Label specifies the section of the program to jump to.

Explanation

GOSUB is a close relative of the GOTO command. The GOSUB command tells the program to go execute code at the beginning of the specified label. Unlike GOTO, GOSUB stores the location of the next line of code immediately following itself, when the program encounters a RETURN instruction in the subroutine, it then tells the program to return to the stored location.

When GOSUBs are used, a RETURN statement is necessary (at the end of the subroutine) to take the program back to the instruction after the most recent GOSUB.

Important Notes

Each GOSUB call uses 4 bytes of ram from the STACK to store the return address.

Goto

GOTO Label Go to the point in the program specified by Label.

Label specifies the section of the program to jump to.

Explanation

The GOTO command makes a program jump to a specific label and execute the code that starts at that location. BASIC programs are read from left to right / top to bottom, just like in the English language. The GOTO command forces the program to jump to another section of code.

High

HIGH pin Makes the specified pin an output and sets it to high (+5 volts is High)

Pin is an expression of the I/O pin number to use.

Explanation

The HIGH command is used to set the designated pin to an output and to +5 volts. This allows your program to easily turn on an LED or other such devices.

HPWM

HPWM pin,period,duty

Output a pulse width modulated signal at the specified period and duty cycle

Pin is an expression of the I/O pin number to use.

This pin will be placed into output mode during pulse generation then switched to input mode when the instruction finishes. Only pins with the FTIOB/C or D option can use the HPWM command.

Period is an expression of the period of the pulse width signal in *us*.

Duty is an expression of the duty cyle of the pulse width signal in *microseconds(us)*.

Explanation

The HPWM command outputs a user specified Pulse signal. The period is the time in *us* of one pulse cycle. The duty is the time in *us* that the pulse signal is high.

HSERIN

HSERIN {timeout,tlabel,}[{mods} Var...VarN] Read data from the hardware serial port

Timeout is an expression of the time in millisecons to wait for data to be recieved.

TLabel a label to jump to when HSERIN times out.

Mods are command modifiers which can be used to modify the variable directly.

Var...VARN is a variable or list of variables(comma delimited) where data will be stored.

Explanation

The HSERIN command is part of the hardware serial port system. In order for it to work properly an ENABLEHSERIAL compiler directive must be in the program and a SETHSERIAL command must setup the hardware serial port. HSERIN works almost identically to the SERIN command except it must use the hardware serial input pin(RXD) and the baudrate is set by the SETHSERIAL command.

HSERIN2 (ATOM-Pro Plus only)

HSERIN2 {timeout,tlabel,}[{mods} Var...VarN] Read data from the hardware serial port

Timeout is an expression of the time in millisecons to wait for data to be recieved.

TLabel a label to jump to when HSERIN times out.

Mods are command modifiers which can be used to modify the variable directly.

Var...VARN is a variable or list of variables(comma delimited) where data will be stored.

Explanation

The HSERIN2 command is part of the hardware serial port system(BasicATOM-Pro Plus only). In order for it to work properly an ENABLEHSERIAL2 compiler directive must be in the program and a SETHSERIAL2 command must setup the hardware serial port. HSERIN2 works almost identically to the SERIN command except it must use the hardware serial input pin(RXD_2) and the baudrate is set by the SETHSERIAL2 command.

HSEROUT

HSEROUT [{mods} Exp...ExpN] Read data from the hardware serial port

Mods are command modifiers which can be used to modify the variable directly.

Exp...ExpN is an expression or list of expressions(comma delimited) of data that will be sent.

Explanation

The HSEROUT command is part of the hardware serial port system(BasicATOM-Pro Plus only). In order for it to work properly an ENABLEHSERIAL directive must be in the program and a SETHSERIAL command must setup the hardware serial port. HSEROUT works almost identically to the SEROUT command except it must use the hardware serial output pin(TXD) and the baudrate is set by the SETHSERIAL command.

HSEROUT2 (ATOM-Pro Plus only)

HSEROUT2 [{mods} Exp...ExpN] Read data from the hardware serial port

Mods are command modifiers which can be used to modify the variable directly.

Exp...ExpN is an expression or list of expressions(comma delimited) of data that will be sent.

Explanation

The HSEROUT2 command is part of the hardware serial port system(BasicATOM-Pro Plus only). In order for it to work properly an ENABLEHSERIAL2 directive must be in the program and a SETHSERIAL2 command must setup the hardware serial port. HSEROUT2 works almost identically to the SEROUT command except it must use the hardware serial output pin(TXD_2) and the baudrate is set by the SETHSERIAL2 command.

HSERVO

HSERVO [Pin\Pos\Spd....PinN\PosN\SpdN] Read data from the hardware serial port

Pin...PinN are expressions of the pin numbers of the servos whose position and speed are to be set.

Pos...PosN are expressions of the positions to set the specified servos to.

Spd...SpdN are optional expressions of the speed to move each servo to its new position(defaults to 255 if not used).

Explanation

The HSERVO command is a back ground timer interrupt driven command. It allows you to set the position and speed to move to that new position of upto 32 servos at one time. Each severo set will start moving to its new position imediately after the HSERVO comand finishes. HSERVO requires an ENABLEHSERVO directive in your program.

Note: The hardware servo command can affect timing critical commands such as pause and serial commands(not HSERIAL commands). See the ENABLEHSERVO directive for details on calculating processor usage.

I2Cin

I2CIN DataPin, ClockPin,{ErrLabel,}Control,{Address,} [{mods}Var,...VarN] Receives data from an I2C device (EEPROM, External A/D Converter)

DataPin is an expression of the I/O pin number to use for data(SDA).

ClockPin is an expression of the pin number that the BasicATOM will use to clock the bus signal. (SCL)

ErrLabel is a label that the program will jump to if the I2CIN command fails (i.e.: device is not connected).

Control is an expression of the I2C device's control byte. The control byte consist of two parts. The first four bits are the device type (EEPROMs use %1010). The next three bits are the device ID. If the address lines of the serial EEPROM (i.e. : A0,A1, A2) are grounded then the next three bits of the control byte must be zero.(ie: %1010000X). The last bit is a flag used by the ATOM-Pro to determine the addressing format, 1 =16bit ad dressing, 0 = 8bit addressing for I2C communications.

Address is an optional expression of the starting address for reading from the device.

Mods are command modifiers which can be used to modify the variable data directly after being recieved.

Var is a variable where data being recieved from the device will be stored

 $\ensuremath{\text{VarN}}$ is a list of variables where the data being recieved from the device will be stored

Explanation

The I2CIN command allows your program to receive data from an I2C device.

I2Cout

I2COUT DataPin, ClockPin,{ErrLabel,}Control,{Address,} [{mods} Exp,...ExpN] Sends data to an I2C device (EEPROM, External A/D Converter)

DataPin is an expression of the I/O pin number to use for data(SDA).

ClockPin is an expression of the pin number that the BasicATOM will use to clock the bus signal. (SCL)

ErrLabel is a label that the program will jump to if the I2CIN command fails (i.e.: device is not connected).

Control is an expression of the I2C device's control byte. The control byte consist of two parts. The first four bits are the device type (EEPROMs use %1010). The next three bits are the device ID. If the address lines of the serial EEPROM (i.e. : A0,A1, A2) are grounded then the next three bits of the control byte must be zero.(ie: %1010000X). The last bit is a flag used by the ATOM-Pro to determine the addressing format, 1 =16bit addressing, 0 = 8bit addressing for I2C communications.

Address is an optional expression of the starting address for writing to the device.

Mods are command modifiers which can be used to modify the variable data directly before being sent.

Exp is an expression of the data being sent.

ExpN is a list of expressions of the data being sent.

Explanation

The I2COUT command allows your program to write data to an I2C device.

If...Then...Elseif...Else...Endif

IF Compare THEN {Gosub} Label Compare, if true(not 0) jump to label or:

IF Compare THEN

Statements...

ELSEIF Compare

Statements...

Else

Statements...

Endif

The IF...THEN...ELSEIF...ELSE...ENDIF evaluates one or more conditions and, if true, jumps to a label. If false then skip next function

Condition is a statement, such as "x = 7" that can be evaluated as true or false.

Gosub is optional. Using GOSUB allows your program to return to the next line of your program after running a subroutine.

Label is a label that specifies where to go in the event that the condition is true.

Explanation

The If...Then command is a decision maker of sorts. There are two ways in which If...Then can be used. The first tests a condition and, if that condition is true, jumps to a point in the program specified by an address label. The condition that IF...THEN tests is written as a mixture of comparison and logic operators. The comparison operators are:

= equal	< less than
<> not equa l	>= greater than or equal to
> greater than	<= less than or equal to

The second use of the If...Then can conditionally execute a group of statements following the THEN. The statements must be followed by Elseif or Else with an Endif.

Input

INPUT pin Makes the specified pin an input

Pin is a variable or constant that specifies the I/O pin to use.

Explanation

There are several ways to make a pin an input. When a program begins, all of the pins should be inputs. Input instructions PULSIN, SERIN will automatically change the specified pin to input and leave it in that state.

Lcdinit

LCDINIT RegSel\CLK\DB7\DB6\DB5\DB4,RdWrPin Initilize the LCD display.

RegSel can be a constant or variable specifying the pin for the "R/S" line of the LCD.

 $\ensuremath{\text{CLK}}$ can be a constant or variable specifying the pin for the "E" line of the LCD.

DB7-DB4 can be constants or variables specifying the data lines of the LCD.

 ${\bf RdWrPin}$ can be a constant or variable specifying the pin for the "R/W" line of the LCD.

Lcdread

LCDREAD RSel\CLK\DB7\D6\D5\D4,RdWrPin, Address, [{mods} Var] Reads the RAM on a LCD module using the Hitachi 44780 controller or equivalent.

RSeI is an expression of the pin number to use for the RegSeI (R/S line) of the LCD

CLK is an expression of the pin number to use the clock(E) line of the LCD

D7-D4 are expressions of the 4 pin numbers used for the LCD data line

RdWrPin is an optional expression of the pin number used to connect to the RdWr line of the LCD

Address is an expression of the first address location of RAM you are trying to read. Address from 0 to 127 return the current character in the display memory. Address 128 and above return Character RAM values.

Mods are command modifiers which can be used to modify the variable directly.(See Command Modifiers)

Var is the variable where the value returned will be stored.

Note

When using the LCDREAD command you will need to first initialize the LCD screen. See LCDINIT.

Lcdwrite

LCDWRITE RSel\CLK\D7\D6\D5\D4,{RdWrPin,} [{mods} Exp] Sends Text to an LCD module using an Hitachi 44780 controller or equivalent.

 $\ensuremath{\text{RSel}}$ is an expression of the pin number to be connected to the LCD $\ensuremath{\text{RegSel}}(\ensuremath{\mathsf{R}}/\ensuremath{\mathsf{S}})$ line.

CLK is an expression of the pin number ot be connected to the clock(E) line of the LCD.

D7-D4 are expressions of the 4 pin numbers to connect to the LCD data lines.

RdWrPin is an option expression of the pin number to connect to the RdWr pin of the LCD.

Mods are command modifiers which can be used to modify the expression directly.

Exp can be a constant or variable that is the data to be written.

Note

When using the LCDWRITE command you will need to first initialize the LCD screen. See LCDINIT.

LcdWrite Comand Table

There are several control commands that can be used with LCDWRITE such as CLEAR and HOME. Each additional control command used with LCDWRITE must be separated with a "," (comma) inside of the brackets "[...]". Below is a chart of all the available control commands for use with LCDWRITE.

\$101CLEARClear Display\$102HOMEReturn Home\$104INCCURAuto Increment Cursor(default)\$105INCSCRAuto Increment Display\$106DECCURAuto Decrement Cursor\$107DECSCRAuto Decrement Display\$108OFFDisplay,Cursor, and Blink off\$100SCRDisplay on,†Cursor and Blink off\$101SCRCURDisplay and Blink on, Cursor off\$105SCRCURDisplay and Cursor on, Blink off\$106SCRCURBLKDisplay, Cursor, and Blink on\$107SCRCURBLKDisplay and Cursor on, Blink off\$108SCRCURBLKDisplay and Cursor on, Blink off\$109SCRCURBLKDisplay and Cursor inght\$110CURLEFTMove Cursor left\$111CURRIGHTMove Display left\$112ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W\$180SCRRAM addressSet Display ram address for R/W	Comm	and Name	<u>Description</u>
\$104INCCURAuto Increment Cursor(default)\$105INCSCRAuto Increment Display\$106DECCURAuto Decrement Display\$107DECSCRAuto Decrement Display\$108OFFDisplay,Cursor, and Blink off\$100SCRDisplay on,†Cursor and Blink off\$101SCRBLKDisplay and Cursor on, Blink off\$102SCRCURDisplay and Cursor on, Blink off\$104SCRCURBLKDisplay, Cursor, and Blink on\$105SCRCURBLKDisplay and Cursor on, Blink off\$106SCRCURBLKDisplay and Cursor on, Blink off\$107SCRCURBLKDisplay and Cursor on, Blink off\$108SCRCURBLKDisplay and Cursor on, Blink off\$109SCRRIGHTMove Cursor left\$110CURLEFTMove Cursor right\$112SCRRIGHTMove Display left\$112ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$101	CLEAR	•
\$105INCSCRAuto Increment Display\$106DECCURAuto Decrement Cursor\$107DECSCRAuto Decrement Display\$108OFFDisplay,Cursor, and Blink off\$100SCRDisplay on,†Cursor and Blink off\$101SCRBLKDisplay and Blink on, Cursor off\$105SCRCURDisplay and Cursor on, Blink off\$106SCRCURBLKDisplay and Cursor on, Blink off\$107SCRCURBLKDisplay, Cursor, and Blink on\$108SCRCURBLKDisplay and Cursor on, Blink off\$109SCRCURBLKDisplay and Cursor on, Blink off\$110CURLEFTMove Cursor left\$111CURRIGHTMove cursor right\$112SCRRIGHTMove Display left\$112ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$102	HOME	Return Home
\$106DECCURAuto Decrement Cursor\$107DECSCRAuto Decrement Display\$108OFFDisplay,Cursor, and Blink off\$100SCRDisplay on,†Cursor and Blink off\$101SCRBLKDisplay and Blink on, Cursor off\$102SCRCURDisplay and Cursor on, Blink off\$104SCRCURDisplay, Cursor, and Blink on\$105SCRCURBLKDisplay, Cursor, and Blink on\$106SCRCURBLKDisplay, Cursor, and Blink on\$110CURLEFTMove Cursor left\$114CURRIGHTMove cursor right\$118SCRLEFTMove Display left\$110SCRRIGHTSet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$104	INCCUR	Auto Increment Cursor(default)
\$107DECSCRAuto Decrement Display\$108OFFDisplay,Cursor, and Blink off\$100SCRDisplay on,†Cursor and Blink off\$101SCRBLKDisplay and Blink on, Cursor off\$102SCRCURDisplay and Cursor on, Blink off\$105SCRCURBLKDisplay, Cursor, and Blink on\$106SCRCURBLKDisplay, Cursor, and Blink on\$110CURLEFTMove Cursor left\$114CURRIGHTMove cursor right\$118SCRLEFTMove Display left\$110SCRRIGHTSet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$105	INCSCR	Auto Increment Display
\$108OFFDisplay,Cursor, and Blink off\$10CSCRDisplay on,†Cursor and Blink off\$10DSCRBLKDisplay and Blink on, Cursor off\$10ESCRCURDisplay and Cursor on, Blink off\$10FSCRCURBLKDisplay, Cursor, and Blink on\$110CURLEFTMove Cursor left\$114CURRIGHTMove cursor right\$118SCRLEFTMove Display left\$110SCRRIGHTSet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$106	DECCUR	Auto Decrement Cursor
\$10CSCRDisplay on,†Cursor and Blink off\$10DSCRBLKDisplay and Blink on, Cursor off\$10ESCRCURDisplay and Cursor on, Blink off\$10FSCRCURBLKDisplay, Cursor, and Blink on\$110CURLEFTMove Cursor left\$114CURRIGHTMove cursor right\$115SCRLEFTMove Display left\$116SCRRIGHTMove Display right\$120ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$107	DECSCR	Auto Decrement Display
\$10DSCRBLKDisplay and Blink on, Cursor off\$10ESCRCURDisplay and Cursor on, Blink off\$10FSCRCURBLKDisplay, Cursor, and Blink on\$110CURLEFTMove Cursor left\$114CURRIGHTMove cursor right\$118SCRLEFTMove Display left\$110SCRRIGHTMove Display right\$120ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$108	OFF	Display,Cursor, and Blink off
\$10ESCRCURDisplay and Cursor on, Blink off\$10FSCRCURBLKDisplay, Cursor, and Blink on\$110CURLEFTMove Cursor left\$114CURRIGHTMove cursor right\$118SCRLEFTMove Display left\$11CSCRRIGHTMove Display right\$120ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$10C	SCR	Display on, † Cursor and Blink off
\$10FSCRCURBLKDisplay, Cursor, and Blink on\$110CURLEFTMove Cursor left\$114CURRIGHTMove cursor right\$118SCRLEFTMove Display left\$110SCRRIGHTMove Display right\$120ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$10D	SCRBLK	Display and Blink on, Cursor off
\$110CURLEFTMove Cursor left\$114CURRIGHTMove cursor right\$118SCRLEFTMove Display left\$110SCRRIGHTMove Display right\$120ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$10E	SCRCUR	Display and Cursor on, Blink off
\$114CURRIGHTMove cursor right\$118SCRLEFTMove Display left\$110SCRIGHTMove Display right\$120ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$10F	SCRCURBLK	Display, Cursor, and Blink on
\$118SCRLEFTMove Display left\$11CSCRRIGHTMove Display right\$120ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$110	CURLEFT	Move Cursor left
\$11CSCRRIGHTMove Display right\$120ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$114	CURRIGHT	Move cursor right
\$120ONELINESet display for 1 line LCDs\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$118	SCRLEFT	Move Display left
\$128TWOLINESet display for 2 line LCDs\$140CGRAM addressSet CGRAM address for R/W	\$11C	SCRRIGHT	Move Display right
\$140 CGRAM address Set CGRAM address for R/W	\$120	ONELINE	Set display for 1 line LCDs
•	\$128	TWOLINE	Set display for 2 line LCDs
\$180 SCRRAM <i>address</i> Set Display ram <i>address</i> for R/W	\$140	CGRAM address	Set CGRAM address for R/W
	\$180	SCRRAM address	Set Display ram address for R/W

Let

LET Var = {mods} expression Assign a value to a variable

Var is the variable to store the data in.

Expression is any type of expression.

Explanation

LET is an optional command; as an example Temp=2 is the same as LET Temp=2. The LET command is often used to make programming code more human readable.

Enhancements

The LET command also supports loading a list of values into arrays of variables. For example:

```
myarray var byte(50)
temp var byte
```

```
temp = 10
myarray = 1,2,temp,4,5,6,7,8*temp,9,"Hello world"
```

As you can see from the example the list can include variables, expressions and strings.

Important Note

The LET command also supports modifiers. (See Command Modifiers)

Lookdown

LOOKDOWN value,{comparisonOp,}[value0, value1,...valueN],resultVariable

Compare a value to a list of values according to the relationship specified by the comparison operator. Store the index number of the first value that makes the comparison true into resultVariable. If no value in the list makes the comparison true, resultVariable is unaffected.

Value is an expression to be compared to the values in the list.

ComparisonOp is optional and maybe one of the following:

= equal	< less than
<> not equal	>= greater than or equal to
> greater than	<= less than or equal to

If no comparison operator is specified, Then it defaults to equal (=).

Value0, value1... a list of expressions.

ResultVariable is a variable in which the index number will be stored if a true comparison is found.

Explanation

LOOKDOWN searches values in a list, and stores the item number of the first match in a variable. In other words, Lookdown compares the user value to values in a list, the first comparison that is true, will return the value of the index position the match was found. The index list starts at 0 not 1.

Lookup

LOOKUP index, [value0, value1,...valueN], resultVariable

Get the value specified by the index and store it in a variable. If the index exceeds the highest index value of the items in the list, variable is unaffected.

Index an expression of the item number of the value to be retrieved from the list of values.

Value0, value1... a list of expressions.

ResultVariable is a variable in which the retrieved value will be stored.

Explanation

Lookup could be considered the opposite of Lookdown. Lookup returns an item from a list based on the item's position in the list. Positions start at 0.

Low

LOW pin Make the specified pin output a low signal.

Pin is an expression of the I/O pin number to use.

Explanation

The LOW command will make the specified pin low (0 Volts), which will also make the specified pin an output.

Nap

NAP period

Enter sleep mode for the specified period. Power consumption is reduced while sleeping.

Period is an expression of the time in multiples of 2 millisecond periods of sleep

Explanation

NAP is similar to Sleep, in that it runs the processor's internal sleep system, however unlike the Sleep command, nap has no special options. All sleeping time is 2ms * period.

OnInterrupt

ONINTERRUPT *intname, label* Set a label to jump to when the specified interrupt occures

IntName is the name of the interrupt(See table below)

Label is the name of the label to jump to when the interrupt occures

Interrupts

IRQ0INT	Irq0 pin interrupt
IRQ1INT	Irq1 pin interrupt
IRQ2INT	Irq2 pin interrupt
IRQ3INT	Irq3 pin interrupt

WKPINT_0	WKP0 pin onchange interrupt
WKPINT_1	WKP1 pin onchange interrupt
WKPINT_2	WKP2 pin onchange interrupt
WKPINT_3	WKP3 pin onchange interrupt
WKPINT_4	WKP4 pin onchange interrupt
WKPINT_5	WKP5 pin onchange interrupt

TIMERVINT_OVF TIMERVINT_CMEB TIMERVINT_CMEA TimerV overflow interrupt TimerV compare match A int TimerV compare match B int

Transmit Data Register Empty interrupt

Read Data Register Full interrupt

Transmit End interrupt

Frame Error interrupt

Parity Error interrupt

Overflow Error interrupt

SCI3INT_TDRE SCI3INT_RDRF SCI3INT_TEND SCI3INT_OER SCI3INT_FER SCI3INT_FER

.

- IICINT I2C interrupt
- ADINT

Analog conversion complete int

HSERIALINT_TDRE HSERIALINT_RDRF	Transmit Data Register Empty interrupt
HSERIALINT TEND	Read Data Register Full interrupt Transmit End interrupt
HSERIALINT_OER	Overflow Error interrupt
HSERIALINT_FER	Frame Error interrupt
HSERIALINT_PER	Parity Error interrupt

HSERVOINT_IDLE	Any Servo Idle interrupt
HSERVOINT_IDLE0-31	# Servo Idle interrupt
HSERVOINT_USER	HServo User Interrupt
HSERVOINT	Hservo Interrupt

ATOM-Pro only(H8/3664/3694)

TIMERAINT	Overflow interrupt
-----------	--------------------

TIMERWINT_OVF	Overflow interrupt
TIMERWINT_IMIEA	Capture/Compare Match A int
TIMERWINT_IMIEB	Capture/Compare Match B int
TIMERWINT_IMIEC	Capture/Compare Match C int
TIMERWINT_IMIED	Capture/Compare Match D int

ATOM-Pro Plus only(H8/3687)

RTCINT Real time clock interrupt(ATOM-Pro Plus only)

TIMERZOINT_OVF	Overflow interrupt
TIMERZOINT_IMIEA	Capture/Compare Match A int
TIMERZOINT_IMIEB	Capture/Compare Match B int
TIMERZOINT_IMIEC	Capture/Compare Match C int
TIMERZOINT_IMIED	Capture/Compare Match D int
TIMERZ1INT_UDF	Underflow interrupt
TIMERZ1INT_OVF	Overflow interrupt
TIMERZ1INT_IMIEA	Capture/Compare Match A int
TIMERZ1INT_IMIEB	Capture/Compare Match B int
TIMERZ1INT_IMIEC	Capture/Compare Match C int
TIMERZ1INT_IMIED	Capture/Compare Match D int
TIMERB1INT	Overflow interrupt
SCI3_2INT_TDRE	Transmit Data Register Empty interrupt
SCI3_2INT_RDRF	Read Data Register Full interrupt
SCI3_2INT_TEND	Transmit End interrupt
SCI3_2INT_OER	Overflow Error interrupt
SCI3_2INT_FER	Frame Error interrupt
SCI3_2INT_PER	Parity Error interrupt
HSERIAL2INT_TDRE	Transmit Data Register Empty interrupt
HSERIAL2INT_RDRF	Read Data Register Full interrupt
HSERIAL2INT_TEND	Transmit End interrupt
HSERIAL2INT_OER	Overflow Error interrupt
HSERIAL2INT_FER	Frame Error interrupt
HSERIAL2INT_PER	Parity Error interrupt

Explanation

The OnInterrupt directive is a compile time action. It sets, at compile time, the label that the specified interrupt will jump to when that interrupt occurs. The OnInterrupt command does NOT enable an interrupt or setup any registers specific to the specified interrupt.

All interrupts except for SCI3(and SCI3_2), IICINT and ADINT clear their interrupt flags when they jump to the label specified in the ONINTERRUPT directive.

See Enable, Disable

Output

OUTPUT pin Makes the specified pin an output

Pin is an expression of the I/O pin number to use.

Explanation

The OUTPUT command allows your program to directly affect the direction of the specified pin.

OWIN

OWIN Pin,Mode,{NCLabel,} [{Mods} Var] Protocol used to communicate to 1-wire devices.

Pin is an expression of the I/O pin number to use for the One wire command.

Mode is an expression indicating the mode of data transfer. Mode controls placement of reset pulses, detection of presence pulses, byte / bit input and normal / high speed transmission. The proper value for Mode will depend on the 1-wire device used. Consult the device data sheet to determine the correct Mode. See chart below:

<u>Mode</u>	Setting
0	No Reset, Byte mode, Low speed
1	Reset before data, Byte mode, Low speed
2	Reset after data, Byte mode, Low speed
3	Reset before and after data, Byte mode, Low speed
4	No Reset, Bit mode, Low speed
5	Reset before data, Bit mode, Low speed

NCLabel is a label the program can jump to if a connection failure occurs with the OWIN command (ie. No chip present).

Mods are command modifiers which can be used to modify the variable directly.

Var is the variable or variable array where the value(s) returned will be stored.

Explanation

The 1-wire protocol was developed by Dallas Semiconductor as an asynchronous serial communication format. It uses one I/O pin as a common bi-direction serial data bus..

The 1-Wire protocol synchronizes the slave devices to the master. The master initiates and controls all activities on the 1-Wire bus. 1-Wire uses CMOS/TTL logic levels. A resistor connects the data line of the 1-Wire bus to the 5V supply of the bus master.

OWOUT

OWOUT Pin,Mode,{NCLabel,} [{Mods} Exp] Protocol used to communicate to 1-wire devices.

Pin is an expression of the I/O pin number used for the One wire command.

Mode is an expression of the mode of data transfer. Mode controls placement of reset pulses, detection of presence pulses, byte / bit input and normal / high speed. The proper value for Mode will depend on the 1-wire device used. Consult the device data sheet to determine the correct Mode. See chart below:

<u>Mode</u>	Setting
0	No Reset, Byte mode, Low speed
1	Reset before data, Byte mode, Low speed
2	Reset after data, Byte mode, Low speed
3	Reset before and after data, Byte mode, Low speed
4	No Reset, Bit mode, Low speed
5	Reset before data, Bit mode, Low speed

NCLabel is a label the program can jump to if a connection failure occurs with the OWOUT command (ie. No chip present).

Mods are command modifiers which can be used to modify the variable directly.

Exp is an expression of the data to be sent.

Explanation

The 1-wire protocol was developed by Dallas Semiconductor as an asynchronous serial communication format. It uses one I/O pin as a common bi-direction serial data bus. The OWout and OWin commands are tightly integrated. In most cases you will need both to talk to any 1-wire part.

Pause

PAUSE milliseconds Wait(stop) for the specified number of milliseconds.

Milliseconds is an expression of the length of the pause in ms. Milliseconds may be any length up to a 32 bit number

Explanation

The PAUSE command delays the execution of the program for the specified number of milliseconds.

Pauseclk

PAUSECLK cycles

Pause the program (do nothing) for the specified number clock cycles.

Cycles is an expression of number of clock cycles to pause.

Explanation

The PAUSECLK command delays the execution of the program for the specified number of clock cycles. Since each oscillator has a variances of 0.05% you will need to determine your own timings. This is only necessary if precision timing is required.

Pauseus

PAUSEUS halfmicroseconds Pause the program (do nothing) for the specified number of micro seconds.

Halfmicroseconds is an expression of the number of .5us increments to pause

Explanation

The PAUSEUS command delays the execution of the program for the specified number of halfmicroseconds.

PEEK...POKE

PEEK address, variable POKE address, expression

Read/Write specified RAM location

Address is an expression of the address in memory to read/write to.

Variable is the variable where the results will be stored or where where the value to be written is stored.

Expression is an expression

Explanation

PEEK and POKE are considered advance commands and should only be used by experienced users. The explanation of these commands are kept short intentionally. Use of the PEEK command allows a specific address to be read and store its value in the assigned *variable*. The PEEK and POKE commands allow direct access to all of the registers of the ATOMs H8/3664 processor.

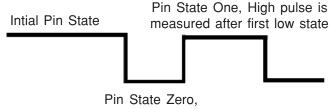
Note The address value actually points to the address+ 0xF780. Ram begins in the H8/3664 at 0xF780. The PEEK and POKE commands automatically offset this address.

Pulsin

PULSIN pin, state, {TimeoutLabel,Timeout,} Var Measure the width of a pulse.

Pin is an expression of the I/O pin number to use. This pin will be placed into input mode during pulse measurement and left in that state after the instruction finishes.

State is an expression(0 or 1) of the trigger state. 0 specifies a (0-to-1) transition. 1 specifies a 1-to-0 transition (0).


TimeoutLabel is an optional label that specifies where to go if a time out occurs. The default time out value is 65,535 microseconds.

Timeout is an expression of the amount of time to wait(in us) before timing out. Timeout must be used with TimeoutLabel

Var is a variable in which the pulse duration will be stored.

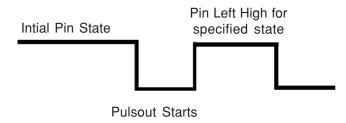
Explanation

PULSIN will measure the pulse width on a specified pin. If the state is zero, the width of a low pulse is measured. If the state is one, the width of a high pulse is measured. The measured width is then placed in Var. If the pulse edge never happens or the width pulse is too great to measure Var will default to 0. Pulsin will timeout after 65,535 microseconds if the optional timeout label is not used.

Pin State Zero, Low pulse is measured PULSIN will return the pulse width in μs.

Pulsout

PULSOUT pin, time Output a pulse.


Pin is an expression of the pin number to use. This pin will be placed into output mode immediately before the pulse and left in that state after the instruction finishes.

Time is an expression of the duration of the pulse in .5 μ s increments.

Explanation

PULSOUT will generate a pulse on the specified pin for the given period. The pulse is generated by toggling the pin state twice. The initial state of the pin will determine the polarity of the pulse. The pin specified to generate the pulse is automatically made an output.

PULSOUT will generate a pulse with a period in 1 μ s increments. The minimum pulse width is 4 μ s. You can not go below this value.

Push...Pop

PUSH value POP variable

Value is any value upto 32bits long

Variable can be any sized variable.

PUSH and POP are used to store a value on the stack and retrieve a value from the stack.

Explanation

PUSH and POP are convientient ways of saving and storing temporary values without using extra defined variables. Push and Pop are safe to use between gosubs.

Pwm

PWM pin, period, duty, cycles Convert a digital value to analog output via pulse-width modulation.

Pin is an expression of the pin to use. This pin will be placed into output mode during pulse generation.

Period is an expression of the period of the pulse width signal in *us.*

Duty is an expression of the duty of the pulse width signal in us.

Cycles is an expression of the number of pulses to output..

Explanation

The PWM command outputs a user specified Pulse signal. The period is the time in *us* of one pulse cycle. The duty is the time in *us* that the pulse signal is high. The PWM command is software based so it has the same limitations as any other software command. If you need to output a PWM signal constantly and still be able to run other commands see the HPWM command.

RCtime

RCTIME pin, state, {TimeoutLabel,TimeoutMultiple,}, resultVariable Count time while pin remains in state—usually to measure the charge or discharge time of a resistor and capacitor circuit. (RC)

Pin is am expression of the I/O pin number to use. This pin will be placed into input mode and left in that state when the instruction finishes.

State is an expression(1 or 0) of the state that will end the RCTIME period.

TimeoutLabel is an optional label that specifies where to go if a time out occurs. The default time out value is 65,535 microseconds.

Timeout is an expression of the amount of time to wait before timing out.

ResultVariable is a variable in which the time measurement will be stored.

Explanation

RCTIME can be used to measure the charge / discharge time of a resistor and capacitor circuit (RC). RCTIME can also be used as a fast stopwatch for recording events of very short duration. This allows measuring resistance or capacitance using R or C sensors (i.e. thermistors or capacitive humidity sensors); or respond to user input through a potentiometer. (Typically 5k to 50k pot.)

Read

READ address,variable

Read a value from the builin eeprom(Only available on some AtomPro modules)

Address is an expression of the address in the eeprom to read.

Variable any variable type may be used. However, thee eeprom will always return an 8bit value which may be truncated if you use a smaller variable type.

Explanation

READ can be used to get previously stored 8bit values from the onboard EEPROM of supported ATOM-Pro modules. The ATOM-Pro28 and 40 pin modules have 4kbyte eeproms The ATOM-Pro 24 pin module does not have an onboard eeprom. An external I2C eeprom may be connected to p10(SCL)/p11(SDA) to use the READ/WRITE commands. The ATOM-Pro ARC and Mini-ARC can have an external I2C eeprom added to their 8pin I2C socket to support the READ/WRITE commands.

ReadDM

READDM address,[{Mods}variable]

Read a value from the builin eeprom(Only available on some AtomPro modules)

Address is an expression of the addres to start reading at.

Variable any variable type may be used. However, the eeprom will always return an 8bit value which may be truncated if you use a smaller variable type.

Explanation

READDM can be used to get previously stored 8bit values from the onboard EEPROM of supported AtomPro modules. ReadDM supports command modifiers. The ATOM-Pro28 and 40 pin modules have 4kbyte eeproms The ATOM-Pro 24 pin module does not have an onboard eeprom. An external I2C eeprom may be connected to p10(SCL)/p11(SDA) to use the READ/WRITE commands. The ATOM-Pro ARC and Mini-ARC can have an external I2C eeprom added to their 8pin I2C socket to support the READ/WRITE commands.

Repeat...Until

REPEATcode.... UNTIL expression

Expression is an expression

Explanation

Repeat a group of commands until some expression is true. True being any value other than 0.

Resume

RESUME Specialized RETURN command for interrupts

no arguments

Explanation

When exiting from an interrupt the resume command must be used.

Reverse

REVERSE pin Reverse the data direction of the specified pin.

Pin is an expression of the I/O pin number to use. This pin will be placed into the opposite of its current input/output (I/O) mode.

Explanation

Reverse is a convenient way to switch the I/O direction of a pin. If a pin is set as an input, the REVERSE command, will change it to an output.

Serdetect

Serdetect pin,mode,var

Detect incoming baud rate. Used for auto detecting baud rates.

Pin is an expression of the I/O pin number that will be used to receive the sync character.

Mode is the settings for Bits 13,14 and 15 of the BAUDMODE. Bit 13 is a flag that controls the number of data bits and parity (0=8 bits and no parity, 1=7 bits and even parity). Bit 14 controls polarity(0=noninverted, 1=inverted). Bit 15 is not used by SERIN. Constants from the below table can be used for Mode:

IMODE	= Inverted
NMODE	= Non Inverted
IEMODE	 Inverted, Even Parity
NEMODE	= Non Inverted, Even Parity
IOMODE	= Inverted, Open Drain
NOMODE	= Non Inverted, Open Drain
IEOMODE	= Inverted, Even Parity, Open Drain
NEOMODE	= Non Inverted, Even Parity, Open Drain

Var is a word sized variable that will hold the calculated baudmode value which can be used by serin and serout.

Explanation

Serdect is used to auto detect an incoming baud rate. This is ideal for applications or products that can be used at multiple baud rates and be software switched. Serdetect can take the place of hard wired jumpers or switches for changing baud rates.

In order for serdetect to calculate the bitrate a character must be received. For inverted mode the binary value of the character to send for calculating bitrate must be %XXXXX01. For non inverted modes the character must be %XXXXX101.(X = don't care)

Serin

SERIN recieve{\flow},baudmode,{plabel,}{timeout,tlabel,}[inputData] Receive asynchronous (e.g., RS-232) data.

Recieve is an expression of the I/O pin number to recieve data through.

Flow is an optional expression of the I/O pin to be used for flow control. This pin will switch to output mode and remain in that state after the end of the instruction.

Baudmode is a 16-bit expression of the serial timing and configuration. The lower 13 bits are the bit period. Bit 13 (\$2000 hex) is a flag that controls the number of data bits and parity (0=8 bits and no parity, 1=7 bits and even parity). Bit 14 (\$4000 hex) controls polarity (0=noninverted, 1=inverted). Bit 15 (\$8000 hex) is not used by SERIN.

Plabel is an optional label where the program will jump to in the event of a parity error. This argument may only be provided if baud mode indicates 7 bits, and even parity, otherwise the label is ignored.

Timeout is an optional expression that tells SERIN how long, in milliseconds, to wait for incoming data. If data does not arrive in time, the program will jump to the address specified by Tlabel.

Tlabel is an optional label which must be provided along with Timeout, indicating where the program should go in the event that data does not arrive within the period specified by Timeout.

InputData is a list of variables and modifiers that tells SERIN what to do with incoming data. SERIN can store data in a variable or array; interpret numeric text (decimal, binary, or hex), and store the corresponding value in a variable; wait for a fixed or variable sequence of bytes; or ignore a specified number of bytes. These actions can be combined in any order in the inputData list.

SERIN Modes

Inverted?	Parity?	Baud Rate	Constant
No	No	300	N300
Yes	No	300	1300
No	Yes	300	NE300
Yes	Yes	300	IE300
No	No	1200	N1200
Yes	No	1200	11200
No	Yes	1200	NE1200
Yes	Yes	1200	IE1200
No	No		*N
Yes	No		*1
No	Yes		*NE
Yes	Yes		*IE

* 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600

Explanation

One of the most used forms of communication between electronic devices is serial communication. The two types of serial communication are asynchronous and synchronous. The SERIN and SEROUT commands use an asynchronous method to receive and send serial data. The term asynchronous means "no clock." Data is transmitted and received without the use of a separate "clock" wire. The PC's serial ports (COM ports, RS-232) use asynchronous serial communication.

Improtant Note

 There are several modifiers for use with the SERIN / SEROUT commands. Refer to Command Modifier section of this manual.
 There are many predefined serial baudmodes. See reserved words for whole list.

Serout

SEROUT transmit,baudmode,{pace,}[outputData] SEROUT transmit\flow,baudmode,{timeout,tlabel,}[outputData] Transmit asynchronous (e.g., RS-232) data.

Transmit is an expression of the I/O pin number to send data through.

Baudmode is a 16-bit expression of the serial timing and configuration. The lower 13 bits are the bit period. Bit 13 (\$2000 hex) is a flag that controls the number of data bits and parity (0=8 bits and no parity, 1=7 bits and even parity). Bit 14 (\$4000 hex) controls polarity (0=noninverted, 1=inverted). Bit 15 (\$8000 hex) determines whether the pin is driven to both states (0/1) or to one state and open in the other (0=both driven, 1=open).

Pace is an optional expression of the time in milliseconds it should pause between transmitting bytes.

OutputData is a list of expressions of the outgoing data. SEROUT can transmit individual or repeating bytes; convert values into decimal, hex or binary text representations; or trans mit strings of bytes from variable arrays.

Flow is an optional expression of the I/O pin to use for flow control(byte-by-byte handshaking). This pin will switch to input mode and remain in that state after the instruction is completed.

Timeout is an optional expression of how long in milliseconds to wait for permission to send. If permission does not arrive in time, the program will continue at tlabel. Flow control must be used with Timeout.

Tlabel is an optional label used with flow control and timeout. Tlabel indicates where the program should go in the event that permission to transmit data is not granted within the period specified by the Timeout command. Tlabel must be used with Timeout and flowcontrol.

SEROUT Modes

Driven?	Inverted?	Parity?	Baud Rate	Constant
Yes	No	No	300	N300
Yes	Yes	No	300	1300
Yes	No	Yes	300	NE300
Yes	Yes	Yes	300	IE300
No	No	No	300	NO300
No	Yes	No	300	IO300
No	No	Yes	300	NEO300
No	Yes	Yes	300	IEO300
Yes	No	No		N
Yes	Yes	No		I
Yes	No	Yes		NE
Yes	Yes	Yes		IE
No	No	No		NO
No	Yes	No		IO
No	No	Yes		NEO
No	Yes	Yes		IEO

* 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600

Table 2-2 lists the predefined Baudmode constants available in MBasic. As you can see from the table there are several different baudmodes for each actual baud rate. The following describes each baudmode modifier:

- N Normal (not inverted) signal
- I Inverted signal
- E Even Parity(otherwise no parity)
- O Open drain(otherwise both high and low are driven)

Table 2-3 lists the command modifiers for the Output data

Explanation

One of the most used forms of communication between electronic devices is serial communication. The two types of serial communication are asynchronous and synchronous. The SERIN and SEROUT commands use an asynchronous method to receive and send serial data. The term asynchronous means "no clock." Data is transmitted and received without the use of a separate "clock" wire. The PC's serial ports (COM ports, RS-232) use asynchronous serial communication.

Servo

SERVO pin, rotation{, repeat}

Pin is an expression of the the pin number to control the servo

Rotation is an expression of the position you want the servo to rotate to. A value from -2400 to + 2400 is used with 0 being center. The maximum +2400 and minimum -2400 will vary based on the servo being used. Take caution not to exceed these values.

Repeat (optional)Specifies the number of internal cycles the command runs(defaults to 20).

Explanation

The SERVO command automatically handles all servo pulse singal calculations for you. SERVO is a foreground task.

Multiple Servo

 $\label{eq:servo1} MSERVO pin, \\ servo1{\servo2{\servo3{\servo4{\servo5{\servo6{\servo7{\servo8{\servo7{\servo8{\servo12}}}}}}}, \\ \end{tabular} is the servo1{\servo10{\servo12}}) \end{tabular} is the servo1{\servo12}) \end{tabular} is the servo1{\servo12}} is the servo1{\servo12}) \end{tabular} is the servo1{\servo12}} is the servo1{\servo12}} is the servo1{\servo12}} is the servo1{\servo12}} is the servo1{\servo12} is the servo1{\servo12}} is the servo1{\servo12} is the servo1{\servo12}} is the servo1{\servo12} is the servo1{\servo12}} is the servo1{\servo12}} is the servo1{\servo12} is the servo1{\servo12}} is the servo1{\servo12}} is the servo1{\servo12}} is the servo1{\servo12} is the servo1{\servo12}} is the servo1{\servo12}} is the servo1{\servo12} is the servo1{$

Pin is an expression of the pin number controlling servo1. All other servos are controlled by the next pin(ie servo2,pin+1,servo3,pin+2 etc...)

Servo# is an expression of the position you want the servo to rotate to. A value from -2400 to +2400 is used with 0 being center. The maximum +2400 and minimum -2400 will vary based on the servo being used. Take caution not to exceed these values.

Repeat (optional)Specifies the number of internal cycles the command runs(defaults to 20).

Explanation

The MSERVO command automatically handles all servo pulse singal calculations for you. MSERVO is a foreground task.

SetHserial

SETHSERIAL baudrate, databits, parity, stopbits

Baudrate is any one of the constants below.

H300	H26400
H600	H28800
H1200	H31200
H2400	H33600
H4800	H36000
H7200	H38400
H9600	H57600
H12000	H62500
H14400	H125000
H16800	H250000
H19200	H312500
H21600	H500000
H24000	

Databits can be either of the constants below.

H8DATABITS H7DATABITS

Parity can be any one of the constants below.

HNOPARITY HEVENPARITY HODDPARITY

Stopbits can be either of the constants below.

H1STOPBITS H2STOPBITS

Explanation

The SETHSERIAL command sets the HSERIAL system baudrate and modes. This command must be used before using a HSERIN/ HSEROUT command. The ENABLEHSERIAL directive must be in your program for this command to function properly.

SetHserial2 (ATOM-Pro Plus only)

SETHSERIAL2 baudrate, databits, parity, stopbits

Baudrate is any one of the constants below.

H300	H26400
H600	H28800
H1200	H31200
H2400	H33600
H4800	H36000
H7200	H38400
H9600	H57600
H12000	H62500
H14400	H125000
H16800	H250000
H19200	H312500
H21600	H500000
H24000	

Databits can be either of the constants below.

H8DATABITS H7DATABITS

Parity can be any one of the constants below.

HNOPARITY HEVENPARITY HODDPARITY

Stopbits can be either of the constants below.

H1STOPBITS H2STOPBITS

Explanation

The SETHSERIAL2 command sets the HSERIAL2 system baudrate and modes. This command must be used before using a HSERIN2/ HSEROUT2 command. The ENABLEHSERIAL2 directive must be in your program for this command to function properly.

Shiftin

SHIFTIN Data,Clock,Mode,[result{\bits},result{\bits}...}] Shift data in from a synchronous-serial device.

Data is an expression of the I/O pin connected to the synchronous-serial device's output pin. The pin's I/O direction will be changed to an input and will remain in that state after the instruction is completed.

Clock is an expression of the I/O pin connected to the synchronous-serial device's clock input. The pin's I/O direction will be changed to an output and will remain in that state after the instruction is completed.

Mode is a value (0—7) or one of 8 predefined symbols that sets the order in which data bits are to be arranged and the relationship of clock pulses to valid data and the speed of transmition. Here are the symbols, values, and their meanings:

MSBPRE	0 Data msb-first; sample bits before clock
LSBPRE	1 Data lsb-first; sample bits before clock
MSBPOST	2 Data msb-first; sample bits after clock
LSBPOST	3 Data lsb-first; sample bits after clock
FASTMSBPRE	4 Data msb-first; sample bits before clock
FASTLSBPRE	5 Data lsb-first; sample bits before clock
FASTMSBPOST	6 Data msb-first; sample bits after clock
FASTLSBPOST	7 Data lsb-first; sample bits after clock

(Msb is most-significant bit; the highest or left most bit of a nibble, byte, word or long. Lsb is the least-significant bit; the lowest or right most bit of a nibble, byte, word or long.)

(Fast mode runs SHIFTIN at the fastest possible rate. Normal mode limits the speed to 100kbps)

Result is a variable where incoming data will be stored.

Bits is an optional entry setting how many bits (1—32) are to be read by SHIFTIN. Defaults to 8 bits.

Explanation

Synchronous serial communications, unlike ansyncronous(i.e. SERIN and SEROUT), is clocked by a master(The ATOM) and data bits are read for each clock pulse. This form of communications is commonly used by many peripherals(ADCs, DACs, clocks, memory devices, etc). Trade names for synchronous-serial protocols include SPI and Microwire.

Shiftout

SHIFTOUT Data,Cpin,Mode,[value{\bits},value{\bits}...}] Shift data out to a synchronous-serial device.

Data is an expression of the I/O pin connected to the synchronous-serial device's input pin. The pin's I/O direction will be changed to an output and will remain in that state after the instruction is completed.

Clock is an expression of the I/O pin connected to the synchronous-serial device's clock input. The pin's I/O direction will be changed to an output and will remain in that state after the instruction is completed.

Mode is a value (0—7) or one of 8 predefined symbols that sets the order in which data bits are to be arranged and the relationship of clock pulses to valid data and the speed of transmition. Here are the symbols, values, and their meanings:

MSBPRE	0 Data msb-first; sample bits before clock
LSBPRE	1 Data lsb-first; sample bits before clock
MSBPOST	2 Data msb-first; sample bits after clock
LSBPOST	3 Data lsb-first; sample bits after clock
FASTMSBPRE	4 Data msb-first; sample bits before clock
FASTLSBPRE	5 Data lsb-first; sample bits before clock
FASTMSBPOST	6 Data msb-first; sample bits after clock
FASTLSBPOST	7 Data lsb-first; sample bits after clock

Backwards Compatibility:

LSBFIRST	1	Data shifted out Isb-first.
MSBFIRST	0	Data shifted out msb-first.

Value is an expression of the data to be sent.

Bits is an optional entry setting how many bits (1—32) are to be written by SHIFTOUT. Defaults to 8 bits.

Explanation

Synchronous serial communications, unlike ansyncronous(i.e. SERIN and SEROUT), is clocked by a master(The ATOM) and data bits are read for each clock pulse. This form of communications is commonly used by many peripherals(ADCs, DACs, clocks, memory devices, etc). Trade names for synchronous-serial protocols include SPI and Microwire.

Sleep

Sleep time{,mode} Sleep the specified time. Optionally change processor speeds or enter standby.

Time is an expression of the time to sleep in approx 2ms increments.

Mode is an optional expression of the mode to enter

Standby mode puts the processor to sleep and shuts off the oscillator. An external interrupt or a reset must be used to wake up the processor:

SLEEPSTANDBY Enter standby. Wake on external int

The following modes cause the clock multiplier to be set and puts the processor to sleep for the time specified in the Time argument:

SLEEPACTIVE	Normal sleep
SLEEPACTIVE_8	1/8 system clock sleep
SLEEPACTIVE_16	1/16 system clock sleep
SLEEPACTIVE_32	1/32 system clock sleep
SLEEPACTIVE_64	1/64 system clock sleep

The following modes cause a direct transfer to another clock speed divisor: The processor is NOT put to sleep and the Time argument is ignored:

DIRECTACTIVE	Normal system clock.
DIRECTACTIVE_8	1/8 system clock.
DIRECTACTIVE_16	1/16 system clock.
DIRECTACTIVE_32	1/32 system clock.
DIRECTACTIVE_64	1/64 system clock.

Same as above modes except these modes reset all system registers, TimerV, SCI3 and the AD hardware:

DIRECTACTIVERES	Normal system clock
DIRECTACTIVERES_8	1/8 system clock
DIRECTACTIVERES_16	1/16 system clock
DIRECTACTIVERES_32	1/32 system clock
DIRECTACTIVERES_64	1/64 system clock

Explanation

The Sleep command allows you to run the ATOM-Pro at a lower power drain and/or place it into a sleeping/standby state.

Sound

Sound pin,[duration1\note1,...durationN\noteN] Generate specific note from one pin.

Pin is an expression of the I/O pin to use. This pin will be set to an output during tone generation and left in that state after the instruction is completed.

Duration is an expression of the length in milliseconds of the tone(s).

Note is an expression of the frequency in hertz (Hz, 0 to 32767) of the first tone.

Explanation

The sound command generates a pulse at the specified frequency. The sound command can be used to play tones through a speaker or audio amplifier. Sound can also be used to play simple songs.

Sound2

Sound2 pin1\pin2,[duration1\note1\note2_1,...durationN\noteN\note2_N] Generate specific notes one on each of the two defined pins.

Pin1 \ **Pin2** are expressions of the I/O pins to use. These pins will be set to an output during tone generation and left in that state after the instruction is completed. The two specified pins can be tied together via resistors(390ohm min) to create a single output signal.

Duration(N) is an expression of the length in milliseconds of the tone(s).

Note1_(N) is an expression of the frequency in hertz (Hz, 0 to 32767) of the first tone.

Note2_(N) is an expression of the frequency in hertz (Hz, 0 to 32767) of the second tone.

Explanation

Sound2 generates two pulses at the specified frequency one on each pin specified. The sound2 command can be used to play tones through a speaker or audio amplifier. Sound2 can also be used to play more complicated songs. By generating two frequencies on separate pins, a more defined sound can be produced.

Spmotor

SPMOTOR pin, delay, step

Pin is an expression of the first pin of 4 control pins required. If P0 was used, the control pins would then be P0, P1, P2, P3.

Delay is an expression of the delay time in milliseconds. Delay controls the speed at which the stepper motor will rotate. The delay will also vary from stepper motor to stepper motor.

Step is an expression of the number of steps and the direction. The direction is determined by the sign of Step. Positive values being clockwise and negative numbers being counter clockwise.

Explanation

Stepper motors are precision motors which have an absolute amount of travel per step. This is ideal in situation where precise positioning is necessary. Stepper motors are commonly found in XY positioning tables. Steppers motors can be purchased from several sources. Chances are you may have a few laying around. They are commonly salvaged from old disk drives and laser printers.

There are two types of stepper motors. Unipolar and Bipolar. Unipolar means one pole. This is usually a common ground between 4 coils. Unipolar stepper motors are easier controlled with minimal circuitry. Bipolar motors indicate two poles. Bipolar motors require additional circuity in order to drive them. The SPMOTOR command does not support Bipolar motors. In most cases you can easily distinguish between the two types. Unipolar stepper motors have 5 wires. Bipolar motors usually have 4.

The use of the SPMOTOR command requires a simple circuit using a darlington array (ULN2803A) to sink the load from the stepper motor. Some small low power stepper motors can be driven from the microcontroller directly. However this is not recommended. Other circuits can be used to sink the load from the stepper motor. The ULN2803A is the most commonly used.

Stop

STOP Stops program execution.

Explanation

STOP prevents the program from executing any further instructions until it is reset. The STOP command is identical to END.

Swap

SWAP variable, variable

Variable are the variables to be swapped

Explanation

Swap any two variable's values with each other.

Toggle

TOGGLE pin Invert the state of a pin.

Pin is an expression of the pin number to use.

Explanation

TOGGLE inverts the state of an I/O pin, changing 0 to 1 and 1 to 0. The pin is automatically made an output.

While...Wend

While expression ...code... Wend

Expression is an expression

Explanation

While some expression is true run code. True being any value other than 0.

Write

WRITE address, expression

Write values to the onboard EEPROM of supported AtomPro modules

Address is an expression of the address to write

Expression can be any variable or constant or combination.

Explanation

WRITE is used to store 8bit values in supported AtomPro modules EEPROM. The ATOM-Pro28 and 40 pin modules have 4kbyte eeproms The ATOM-Pro 24 pin module does not have an onboard eeprom. An external I2C eeprom may be connected to p10(SCL)/ p11(SDA) to use the READ/WRITE commands. The ATOM-Pro ARC and Mini-ARC can have an external I2C eeprom added to their 8pin I2C socket to support the READ/WRITE commands.

WriteDM

WRITEDM address,[{Mods}expression]

Write values to the onboard EEPROM of supported AtomPro modules

Address is an expression of the address to begin writing at

Expression can be any variable or constant or combination.

Explanation

WRITEDM is used to store 8bit values in supported AtomPro modules EEPROM. The ATOM-Pro28 and 40 pin modules have 4kbyte eeproms The ATOM-Pro 24 pin module does not have an onboard eeprom. An external I2C eeprom may be connected to p10(SCL)/ p11(SDA) to use the READ/WRITE commands. The ATOM-Pro ARC and Mini-ARC can have an external I2C eeprom added to their 8pin I2C socket to support the READ/WRITE commands.

Reserved Words

Reserved Words

There are many reserved words which can not be used as labels, constants or variables. All command/directive names are reserved words. All words begining with numbers are reserved. All words begining with "_" are reserved. The table below lists all other reserved types and words.

P0	P40
P1	P41
P2	P42
P3	P43
P4	P44
P5	P45
P6	P46
P7	P47
P8	P48
P9	P49
P10	S IN
P11	SOUT
P12	NMODE
P13	IMODE
P14	NEMODE
P15	IEMODE
P16	NOMODE
P17	IOMODE
P18	NEOMODE
P19	IEOMODE
P20	N300
P21	1300
P22	NE300
P23	IE300
P24	NO300
P25	IO300
P26	NEO300
P27 P28	IEO300
P29	N600
P30	1600
P31	NE600
P32	IE600
P33	NO600
P34	IO600 NEO600
P35	IEO600
P36	N1200
P37	11200
P38	NE1200
P39	IE1200

NO1200 IO1200 NEO1200 IEO1200 N2400 12400 NE2400 IE2400 NO2400 102400 NEO2400 IEO2400 N4800 14800 NE4800 IE4800 NO4800 104800 NEO4800 IEO4800 N7200 17200 NE7200 IE7200 NO7200 107200 NEO7200 IEO7200 N9600 19600 NE9600 IE9600 NO9600 109600 NEO9600 IEO9600 N12000 112000 NE12000 IE12000 NO12000 IO12000 NEO12000 IEO12000 N14400 114400 NE14400 IE14400

NO14400 IO14400 NEO14400 IEO14400 N16800 116800 NE16800 IE16800 NO16800 IO16800 NEO16800 IEO16800 N19200 119200 NE19200 IE19200 NO19200 IO19200 NEO19200 IEO19200 N21600 121600 NE21600 IE21600 NO21600 1021600 NEO21600 IEO21600 N24000 124000 NE24000 IE24000 NO24000 IO24000 NEO24000 IEO24000 N26400 126400 NE26400 IE26400 NO26400 IO26400 NEO26400 IEO26400 N28800 128800 NE28800 IE28800

NO28800
IO28800
NEO28800
IEO28800
N31200
131200
NE31200
IE31200
NO31200
IO31200
NEO31200
IEO31200
N33600
133600
NE33600
IE33600
NO33600
IO33600
NEO33600
IEO33600
N36000
136000
NE36000
IE36000
NO36000
IO36000
NEO36000
IEO36000
N38400
138400
NE38400
IE38400
NO38400
IO38400
NEO38400
IEO38400
N57600
157600
NE57600
IE57600
NO57600
IO57600
NEO57600
IEO57600
N115200
1115200
NE115200
IE115200

NO115200
IO115200
NEO115200
IEO115200
N230400
1230400
NE230400
IE230400
NO230400
IO230400
NEO230400
IEO230400
N460800
1460800
NE460800
IE460800
NO460800
IO460800
NEO460800
IEO460800
H300
H600
H1200
H2400
H4800
H7200
H9600
H12000
H14400
H16800
H19200
H21600
H24000
H26400
H28800
H31200
H33600
H36000
H38400
H57600
H62500
H115200
H125000
H250000
H312500
H500000
HNOPARITY
HEVENPARITY

HODDPARITY H8DATABITS
H7DATABITS H1STOPBITS
H2STOPBITS MSBPRE
LSBPRE
MSBPOST LSBPOST
FASTMSBPRE FASTLSBPRE
FASTMSBPOST
FASTLSBPOST MSBFIRST
LSBFIRST
X_A X_B
X_C X_D
X_E
X_F X_G
ХН
X_I X_J
X_K X_L
X_L X_M
X_N X O
X_P
X_1 X_2
X_3
X_5
X_6 X 7
X_8
X_9 X 10
X_11
X_12 X_13
X_14 X_15
X_16
X_Units_On

X Lights_On X On X Off X Dim X Bright X_Lights_Off X Hail X Status On X Status_Off X_Status_Request CLEAR HOME INCCUR INCSCR DECCUR DECSCR OFF SCR SCRBLK SCRCUR SCRCURBLK CURLEFT CURRIGHT SCRLEFT SCRRIGHT ONELINE TWOLINE CGRAM SCRRAM TRAPOINT TRAP1INT TRAP2INT **TRAP3INT** BREAKINT DIRECTINT **IRQ0INT IRQ1INT** IRQ2INT **IRQ3INT** WKPINT 0 WKPINT 1 WKPINT 2 WKPINT 3 WKPINT 4 WKPINT 5

RTCINT (ATOMPro Plus only) TIMERAINT (ATOMPro only)

TIMERWINT OVF (ATOMPro only) TIMERWINT IMIEA (ATOMPro only) TIMERWINT IMIEB (ATOMPro only) TIMERWINT IMIEC (ATOMPro only) TIMERWINT IMIED (ATOMPro only) TIMERVINT OVF TIMERVINT CMEB TIMERVINT CMEA SCI3INT TDRE SCI3INT RDRF SCI3INT TEND SCI3INT OER SCI3INT FER SCI3INT PER IICINT ADINT TIMERZOINT OVF (ATOMPro Plus only) TIMERZOINT IMIEA (ATOMPro Plus only) TIMERZOINT IMIEB (ATOMPro Plus only) TIMERZOINT IMIEC (ATOMPro Plus only) TIMERZOINT IMIED (ATOMPro Plus only) TIMERZ1INT UDF (ATOMPro Plus only) TIMERZ1INT OVF (ATOMPro Plus only) TIMERZ1INT IMIEA (ATOMPro Plus only) TIMERZ1INT IMIEB (ATOMPro Plus only) TIMERZ1INT IMIEC (ATOMPro Plus only) TIMERZ1INT IMIED (ATOMPro Plus only) TIMERB1INT (ATOMPro Plus only) SCI3 2INT TDRE (ATOMPro Plus only) SCI3 2INT RDRF (ATOMPro Plus only) SCI3 2INT TEND (ATOMPro Plus only) SCI3 2INT OER (ATOMPro Plus only) SCI3 2INT FER (ATOMPro Plus only) SCI3 2INT PER (ATOMPro Plus only) HSERIALINT TDRE (ATOMPro Plus only) HSERIALINT RDRF (ATOMPro Plus only) HSERIALINT TEND (ATOMPro Plus only) HSERIALINT OER (ATOMPro Plus only) HSERIALINT FER (ATOMPro Plus only) HSERIALINT PER (ATOMPro Plus only) HSERIAL2INT TDRE (ATOMPro Plus only) HSERIAL2INT RDRF (ATOMPro Plus only) HSERIAL2INT TEND (ATOMPro Plus only) HSERIAL2INT OER (ATOMPro Plus only) HSERIAL2INT FER (ATOMPro Plus only) HSERIAL2INT PER (ATOMPro Plus only) HSERVOINT IDLE HSERVOINT IDLE0

HSERVOINT IDLE1 HSERVOINT IDLE2 HSERVOINT IDLE3 HSERVOINT IDLE4 HSERVOINT IDLE5 HSERVOINT IDLE6 HSERVOINT IDLE7 HSERVOINT IDLE8 HSERVOINT IDLE9 HSERVOINT IDLE10 HSERVOINT IDLE11 HSERVOINT IDLE12 HSERVOINT IDLE13 HSERVOINT IDLE14 HSERVOINT IDLE15 HSERVOINT USER HSERVOINT SLEEPACTIVE SLEEPACTIVE 8 SLEEPACTIVE 16 **SLEEPACTIVE 32 SLEEPACTIVE 64** DIRECTACTIVE DIRECTACTIVE 8 **DIRECTACTIVE 16 DIRECTACTIVE 32** DIRECTACTIVE 64 DIRECTACTIVERES DIRECTACTIVERES 8 **DIRECTACTIVERES** 16 **DIRECTACTIVERES 32 DIRECTACTIVERES 64** SLEEPSTANDBY TCR 0 (ATOMPro Plus only) TIORA 0 (ATOMPro Plus only) TIORC 0 (ATOMPro Plus only) TSR 0 (ATOMPro Plus only) TIER 0 (ATOMPro Plus only) POCR 0 (ATOMPro Plus only) TCNT 0 (ATOMPro Plus only) GRA 0 (ATOMPro Plus only) GRB 0 (ATOMPro Plus only) GRC 0 (ATOMPro Plus only) GRD 0 (ATOMPro Plus only) TCR 1 (ATOMPro Plus only) TIORA 1 (ATOMPro Plus only) TIORC 1 (ATOMPro Plus only) TSR 1 (ATOMPro Plus only)

TIER 1 (ATOMPro Plus only) POCR 1 (ATOMPro Plus only) TCNT 1 (ATOMPro Plus only) GRA 1 (ATOMPro Plus only) GRB 1 (ATOMPro Plus only) GRC 1 (ATOMPro Plus only) GRD 1 (ATOMPro Plus only) TSTR (ATOMPro Plus only) TMDR (ATOMPro Plus only) TPMR (ATOMPro Plus only) TFCR (ATOMPro Plus only) TOER (ATOMPro Plus only) TOCR (ATOMPro Plus only) RSECDR (ATOMPro Plus only) RMINDR (ATOMPro Plus only) RHRDR (ATOMPro Plus only) RWKDR (ATOMPro Plus only) RTCCR1 (ATOMPro Plus only) RTCCR2 (ATOMPro Plus only) RTCSR (ATOMPro Plus only) LVDCR (ATOMPro Plus only) LVDSR (ATOMPro Plus only) SMR 2 (ATOMPro Plus only) BRR 2 (ATOMPro Plus only) SCR3 2 (ATOMPro Plus only) TDR 2 (ATOMPro Plus only) SSR 2 (ATOMPro Plus only) RDR 2 (ATOMPro Plus only) ICCR1 (ATOMPro Plus only) ICCR2 (ATOMPro Plus only) ICMR (ATOMPro Plus only) ICIER (ATOMPro Plus only) ICSR (ATOMPro Plus only) SAR (ATOMPro Plus only) ICDRT (ATOMPro Plus only) ICDRR (ATOMPro Plus only) TMB1 (ATOMPro Plus only) TCB1 (ATOMPro Plus only) TLB1 (ATOMPro Plus only) PCRS1 PCRS2 PCRS3 (ATOMPro Plus only) PCRS5 PCRS6 (ATOMPro Plus only) PCRS7 PCRS8 TMRW (ATOMPro only) TCRW (ATOMPro only)

TIERW (ATOMPro only) TSRW (ATOMPro only) TIOR0 (ATOMPro only) TIOR1 (ATOMPro only) TCNT (ATOMPro only) GRA (ATOMPro only) GRB (ATOMPro only) GRC (ATOMPro only) GRD (ATOMPro only) FLMCR1 FLMCR2 FLPWCR EBR1 FENR TCRV0 TCSRV TCORA TCORB TCNTV TCRV1 TMA (ATOMPro only) TCA (ATOMPro only) SMR BRR SCR3 TDR SSR RDR ADDRA ADDRB ADDRC ADDRD ADCSR ADCR PWDRL (ATOMPro Plus only) PWDRU (ATOMPro Plus only) PWCR (ATOMPro Plus only) TCSRWD TCWD TMWD ICCR (ATOMPro only) ICSR (ATOMPro only) ICDR (ATOMPro only) SARX (ATOMPro only) ICMR (ATOMPro only) SAR (ATOMPro only) ABRKCR ABRKSR

BARH BARL **BDRH BDRL** PUCR1 PUCR5 PDR1 PDR2 PDR3 (ATOMPro Plus only) PDR5 PDR6 (ATOMPro Plus only) PDR7 PDR8 PDRB PMR1 PMR5 PMR3 (ATOMPro Plus only) PCR1 PCR2 PCR3 (ATOMPro Plus only) PCR5 PCR6 (ATOMPro Plus only) PCR7 PCR8 SYSCR1 SYSCR2 IEGR1 IEGR2 IENR1 IENR (ATOMPro Plus only) IRR1 IRR2 (ATOMPro Plus only) IWPR MSTCR1 TSCR BUFEB (ATOMPro only) BUFEA (ATOMPro only) PWMD (ATOMPro only) PWMC (ATOMPro only) PWMB (ATOMPro only) CKS2 (ATOMPro only) CKS1 (ATOMPro only) CKS0 (ATOMPro only) TOD (ATOMPro only) TOC (ATOMPro only) TOB (ATOMPro only) TOA (ATOMPro only) IMIED (ATOMPro only)

IMIEC (ATOMPro only) IMIEB (ATOMPro only) IMIEA (ATOMPro only) IMFD (ATOMPro only) IMFC (ATOMPro only) IMFB (ATOMPro only) IMFA (ATOMPro only) IOB1 (ATOMPro only) IOB0 (ATOMPro only) IOA2 (ATOMPro only) IOA1 (ATOMPro only) IOA0 (ATOMPro only) IOD1 (ATOMPro only) IOD0 (ATOMPro only) IOC2 (ATOMPro only) IOC1 (ATOMPro only) IOC0 (ATOMPro only) TCNT15 (ATOMPro only) TCNT14 (ATOMPro only) TCNT13 (ATOMPro only) TCNT12 (ATOMPro only) TCNT11 (ATOMPro only) TCNT10 (ATOMPro only) TCNT9 (ATOMPro only) TCNT8 (ATOMPro only) TCNT7 (ATOMPro only) TCNT6 (ATOMPro only) TCNT5 (ATOMPro only) TCNT4 (ATOMPro only) TCNT3 (ATOMPro only) TCNT2 (ATOMPro only) TCNT1 (ATOMPro only) TCNT0 (ATOMPro only) GRA15 (ATOMPro only) GRA14 (ATOMPro only) GRA13 (ATOMPro only) GRA12 (ATOMPro only) GRA11 (ATOMPro only) GRA10 (ATOMPro only) GRA9 (ATOMPro only) GRA8 (ATOMPro only) GRA7 (ATOMPro only) GRA6 (ATOMPro only) GRA5 (ATOMPro only) GRA4 (ATOMPro only) GRA3 (ATOMPro only) GRA2 (ATOMPro only) GRA1 (ATOMPro only)

GRA0 (ATOMPro only) GRB15 (ATOMPro only) GRB14 (ATOMPro only) GRB13 (ATOMPro only) GRB12 (ATOMPro only) GRB11 (ATOMPro only) GRB10 (ATOMPro only) GRB9 (ATOMPro only) GRB8 (ATOMPro only) GRB7 (ATOMPro only) GRB6 (ATOMPro only) GRB5 (ATOMPro only) GRB4 (ATOMPro only) GRB3 (ATOMPro only) GRB2 (ATOMPro only) GRB1 (ATOMPro only) GRB0 (ATOMPro only) GRC15 (ATOMPro only) GRC14 (ATOMPro only) GRC13 (ATOMPro only) GRC12 (ATOMPro only) GRC11 (ATOMPro only) GRC10 (ATOMPro only) GRC9 (ATOMPro only) GRC8 (ATOMPro only) GRC7 (ATOMPro only) GRC6 (ATOMPro only) GRC5 (ATOMPro only) GRC4 (ATOMPro only) GRC3 (ATOMPro only) GRC2 (ATOMPro only) GRC1 (ATOMPro only) GRC0 (ATOMPro only) GRD15 (ATOMPro only) GRD14 (ATOMPro only) GRD13 (ATOMPro only) GRD12 (ATOMPro only) GRD11 (ATOMPro only) GRD10 (ATOMPro only) GRD9 (ATOMPro only) GRD8 (ATOMPro only) GRD7 (ATOMPro only) GRD6 (ATOMPro only) GRD5 (ATOMPro only) GRD4 (ATOMPro only) GRD3 (ATOMPro only) GRD2 (ATOMPro only) GRD1 (ATOMPro only)

TEIE CKE1 CKE0 TDR7 TDR6 TDR5 TDR4 TDR5 TDR4 TDR3 TDR2 TDR1 TDR0 TDRE RDRF OER FER PER TEND MPBR MPBT RDR7 RDR6 RDR5 RDR4 RDR3 RDR4 RDR3 RDR2 RDR1 RDR0 ADF ADIE ADST SCAN CKS CH2 CH1 CH0 TRGE B6WI TCWE B4WI TCSRWE B2WI WDON B0WI WRST	TCWD3 TCWD2 TCWD1 TCWD0 CKS3 CKS2 CKS1 CKS0 ICE (ATOMPro only) IEIC (ATOMPro only) MST (ATOMPro only) MST (ATOMPro only) ACKE (ATOMPro only) BSY (ATOMPro only) BSY (ATOMPro only) IRIC (ATOMPro only) SCP (ATOMPro only) STOP (ATOMPro only) STOP (ATOMPro only) AASX (ATOMPro only) AASX (ATOMPro only) AL (ATOMPro only) AL (ATOMPro only) ADZ (ATOMPro only) ICDR7 (ATOMPro only) ICDR7 (ATOMPro only) ICDR5 (ATOMPro only) ICDR3 (ATOMPro only) ICDR3 (ATOMPro only) ICDR1 (ATOMPro only) ICDR1 (ATOMPro only) ICDR1 (ATOMPro only) SVAX6 (ATOMPro only) SVAX7 (ATOMPro only) SVAX1 (ATOMPro only) WAIT (ATOMPro only) WAIT (ATOMPro only) CKS2 (ATOMPro only)
B2WI	MLS (ATOMPro only)
WDON	WAIT (ATOMPro only)
TCWD5	BC1 (ATOMPro only)
TCWD4	BC0 (ATOMPro only)

PINB3 PINB2 PINB1 PINB0 IRQ3 IRQ2 IRQ1 IRQ0 TXD TMOW PMR5_WKP5 PMR5_WKP5 PMR5_WKP3 PMR5_WKP2 PMR5_WKP1 PMR5_WKP0 PCR17 PCR16 PCR15 PCR14 PCR12 PCR11 PCR20 PCR21 PCR21 PCR21 PCR20 PCR55 PCR55 PCR55 PCR54 PCR55 PCR54 PCR55 PCR55 PCR55 PCR51 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR55 PCR51 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR50 PCR57 PCR56 PCR55 PCR51 PCR57 PCR56 PCR55 PCR51 PCR57 PCR56 PCR55 PCR57 PCR56 PCR57 PCR57 PCR56 PCR55 PCR57 PCR56 PCR57 PCR56 PCR57 PCR57 PCR56 PCR57 PCR57 PCR56 PCR57 PCR56 PCR57 PCR57 PCR56 PCR57 PCR57 PCR56 PCR57 PCR56 PCR57 P	STS0 NESEL SMSEL LSON DTON MA2 MA1 MA0 SA1 SA0 NMIEG IEG3 IEG2 IEG1 IEG1 IEG0 WPEG5 WPEG4 WPEG3 WPEG3 WPEG2 WPEG1 WPEG0 IENDT IENTA IENVP IEN3 IEN2 IEN1 IEN2 IEN1 IEN2 IEN1 IEN0 IENTB1 (ATOMPro Plus only) IRRDT IRRTA IRRI3 IRRI2 IRRI1 IRRI3 IRRI2 IRRI1 IRRI0 IWPF5 IWPF4 IWPF3 IWPF2 IWPF1 IWPF1
	IWPF2
PCR85 PCR84	IWPF1 IWPF0
PCR83	MSTIIC
PCR82 PCR81	MSTS3
PCR80	MSTAD MSTWD
SSBY	MSTTW
STS2	MSTTV
STS1	MSTTA

 IICRST IICX DIRE DIRS DIRES DIRL DIRH DIREL DIREH DIRA DIRC DIRC DIRED DIREC DIRED DIR3 DIR4 DIR5 DIR6 DIR7 DIR8 DIR9 DIR10 DIR11 DIR12 DIR13 DIR14 DIR15 DIR16 DIR17 DIR18 DIR16 DIR17 DIR18 DIR19 DIR20 DIR21 DIR22 DIR23 DIR24 DIR25 DIR26 	DIR31 INE INS INES INL INH INEL INEH INA INB INC IND INEA INEB INEC INED IN0 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 IN11 IN12 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 IN11 IN12 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 IN11 IN12 IN3 IN14 IN15 IN16 IN17 IN18 IN19 IN20 IN21 IN22 IN23 IN24 IN25 IN26 IN26 IN27
DIR24	IN25
DIR28	IN29
DIR29 DIR30	IN30 IN31

OUTE OUTS OUTES OUTL OUTH OUTEL OUTEH OUTA OUTB OUTC OUTD OUTEA OUTEB OUTEC OUTED OUT0 OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8 OUT9 OUT10 OUT11 **OUT12 OUT13** OUT14 **OUT15** OUT16 OUT17 OUT18 OUT19 OUT20 OUT21 OUT22 OUT23 OUT24 OUT25 OUT26 OUT27 OUT28 OUT29 OUT30 OUT31

Index

Index

Symbols

!(NOT) 42 #ELSE 36 #ELSEIF 35 #ELSEIFDEF 36 #ELSEIFNDEF 36 #IF 35 #IFDEF 35 #IFNDEF 35 #include 34 -(NEG) 41 << 42 >> 42 [Let] 92 ~(NOT) 42

A

A/D conversion 54 ABS 41 Add 42 ADIN 54 Aliases 24 analog voltage 54 And 42 Arrays 22 ATOM 16 ATOM format 44

В

BasicATOM-Pro 12 BCD2BIN 41 BIN2BCD 41 Binary 40 Bit 21 BIT0 26 BIT1 26 BIT10 26 BIT10 26 BIT11 26 BIT12 26 BIT13 26 BIT14 26 BIT15 26 BIT16 26 BIT17 26 BIT18 26 BIT19 26 BIT2 26 BIT20 26 BIT21 26 BIT22 26 BIT23 26 BIT24 26 BIT25 26 BIT26 26 BIT27 26 BIT28 26 BIT29 26 BIT3 26 BIT30 26 BIT31 26 BIT4 26 BIT5 26 BIT6 26 BIT7 26 **BIT8 26** BIT9 26 Bitwise Operators 42 Branch 55 Button 56 Byte 21 BYTE0 27 **BYTE1 27** BYTE2 27 BYTE3 27 ByteTable 23

С

CGRAM 91 CLEAR 91 Clear 58 Combination I/O Modifiers 46 Comparison Operators 42 CON 30 Conditional compiling 34 Constants 30 COS 41 Count 59 CURLEFT 91 CURRIGHT 91

D

DCD 41 Debug 60 Debugin 61 DECCUR 91 Decimal 40 DECSCR 91 DIG 42 DIR# 28 DIRA 28 DIRB 28 DIRC 28 DIRD 28 DIRE 28 DIREA 28 DIREB 28 DIREC 28 DIRED 28 DIREH 28 DIREL 28 DIRES 28 DIRH 28 DIRL 28 DIRS 28 Disable 62 Divide 42 Do...While 63 DOS 17 Downstate 56 DTMFout 64 DTMFout2 65

Ε

Else 86 ELSEIF 86 Enable 66 End 70 Endif 86 Equal 42 Exception 71

F

FLASH 16 Floating Point Format 44 FloatTable 23 For...Next 72 forums 12 Freqout 73 frequency 59

G

GOSUB 20 Gosub...Return 75 Goto 76 GreaterThan 42 GreaterThan or Equal 42

Η

H8/TINY 16 HEX - DEC - BIN 47 Hexadecimal 40 High 77 HIGHBIT 27 HIGHBYTE 27 HIGHNIB 27 HIGHWORD 27 HIGHWORD 27 Hitachi 16 HOME 91 HPWM 78

Ι

I/O Modifiers 46 I2Cin 84 I2Cout 85 IEEE format: 44 IF 86 If...Then...Elseif...Else...Endif 86 IHEX - IBIN 48 IN# 28 INA 28 INA 28 INC 28 INCCUR 91 Including files 34 INCSCR 91 IND 28

Indicated I/O Modifiers 46 INE 28 INEA 28 INEB 28 INEC 28 INED 28 INEH 28 INEL 28 INES 28 INH 28 **INL 28** Input 87 Input Only Modifiers 46 INS 28 Integrated Development Environment 17 interrupts 66, 115 ISHEX - ISBIN 48

L

LcdInit 88 Lcdread 89 Lcdwrite 90 LessThan 42 LessThan Equal 42 Line Labels 20 Logical AND 43 Logical Exclusive OR 43 Logical NOT 43 Logical Operators 43 Logical OR 43 Long 21 LongTable 23 Lookup 94 Low 95 LOWBIT 26 LOWBYTE 27 LOWNIB 27 LOWWORD 27

Μ

Math Functions 41 MAX 42 microcontroller 16 MIN 42 Mod 42 Modifier usage 46 MSERVO 123 Mulitply 42 Multiple Servo 123

Ν

NCD 41 Nib 21 NIB0 27 NIB1 27 NIB2 27 NIB2 27 NIB3 27 NIB4 27 NIB5 27 NIB5 27 NIB5 27 NIB7 27 Not Equal 42 nterrupts 62 Numerical Types 40

0

OFF 91 **ONELINE 91** OnInterrupt 97 Operator Precedence 40 Or 42 OUT# 29 OUTA 29 OUTB 29 OUTC 29 OUTD 29 OUTE 28 OUTEA 29 OUTEB 29 OUTEC 29 OUTED 29 OUTEH 29 OUTEL 29 OUTES 28 OUTH 29 OUTL 28 Output Only Modifiers 46 OUTS 28 **OWIN 101** OWOUT 102

Ρ

PO 31

P1 31 P10 31 P11 31 P12 31 P13 31 P14 31 P15 31 P2 31 P3 31 P4 31 P5 31 P6 31 P7 31 P8 31 P9 31 Pause 103 Pauseclk 104 Pauseus 105 PEEK...POKE 106 Pin constants 31 Pin Variables 28 Pop 109 Preprocessor 34 Program Memory 20 Pulsin 107 Pulsout 108 Push 109 Pwm 110

R

RAM 16, 20 RANDOM 41 random access memory 20 RCtime 111 Read 112 ReadDM 113 REAL 49 REP 49 Repeat...Until 114 repetitions 72 Reserved Words 140 Resume 115 REV 42 Reverse 116

S

SByte 21

SCR 91 SCRBLK 91 SCRCUR 91 SCRCURBLK 91 SCRLEFT 91 SCRRAM 91 SCRRIGHT 91 SDEC - SHEX - SBIN 47 Serdetect 117 Serin 118 Serout 120 SEROUT Modes 120 Servo 122, 124, 125 Shiftin 126 Shiftout 127 Signed I/O Modifiers 46 SIN 41 SKIP 50 Sound 129 Sound2 130 Spmotor 131 SOR 41 Stop 132 STR 49 Sub 42 Swap 133 SWord 21

Т

Tables 23 Toggle 134 TTL-level 16 TWOLINE 91

U

UNARY Commands 41 USB 17

V

Variable Modifiers 25 Variables 21

W

WAIT 50 WAITSTR 50 While...Wend 135 Windows 17 Word 21 WORD0 27 WORD1 27 WordTable 23 Write 136 WriteDM 137

X

XOr 42

 $\ensuremath{\mathbb{C}}$ 1999-2004 Basic Micro.com $\ensuremath{\mathbb{R}}$ All Rights Reserved No portion of this work may be reproduced without prior written consent from Basic Micro Inc.