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Introduction 
 
The purpose of this course is to get a practical understanding of the most common processing 
techniques in earthquake seismology. The course will deal with manual methods and 
computer assisted methods, although most exercises are computer based. 
In order to follow the course, the student must have basic seismological knowledge based on 
'Modern Global Seismology', by Lay and Wallace or ‘An introduction to seismology, 
earthquakes and earth structure’ by Seth Steim and Michael Wysession as given in the course 
GEOF270. The two courses are given in parallel with the intention that the student follow 
both courses at the same time in order to get practical hands on experience while studying the 
background for the exercises. The main background material is thus covered in Lay and 
Wallace or Stein and Wysession, while additional material and similar material is given in 
these notes. 
 
The SEISAN software is used for the computer processing and a SEISAN manual is required. 
The software, including manual and training course, can be downloaded from  
http://www.geo.uib.no/Seismologi/SOFTWARE/SEISAN_8.1/. The software should be 
installed on the student’s local PC  before starting the exercises since it will be used 
throughout. 
 
A written report has to be made for each exercise and the reports count for 50 % of the 
course grade. 
 
There are 10 exercises covering the topics: 
 
1 Seismic phases and the Wadati diagram. 
2 Manual earthquake location and earthquake catalogs 
3 SEISAN: Seismic data in the computer: Data bases, epicenter maps and digital  
 waveform data 
4 Picking phases and doing earthquake location by computer 
5 Seismograms and response functions 
6 Magnitude and b-value  
7 Using a single station or array for azimuth determination and earthquake location 
8 Fault plane solution 
9 Spectral analysis 
10    Analysis of a set of local events 
 
Additional material included: 
 
Seismic phases, Kulhanec       p    43 
Selected NMSOP (Bormann, 2002) notes and exercises:  
            Section IS 11.1 Earthquake location    p    87 
 Section 3.4   Fault plane solution    p  117 
 Section Ex 3.2  Exercise in fault plane solution  p  131 
 Section Ex 3.4  Exercise in spectral analysis   p  139 
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Other material 
 
At  (http://www.geo.uib.no/Seismologi/SOFTWARE/SEISAN_8.1.2/) 
SEISAN Version 8.1 – introductory training course 
 
At http://www.geo.uib.no/seismo/REPORTS/COURSE_MATERIAL/ 
Bullen travel time tables 
Old exams 
 
 
Pensum: Mainly the result of the exercises and the material in this document. 
 
 
This document found at http://www.geo.uib.no/seismo/REPORTS/COURSE_MATERIAL/ 

http://www.geo.uib.no/Seismologi/SOFTWARE/SEISAN_8.1.2/
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 EXERCISE  1 
 

Seismic phases and Wadati diagram 
 
The purpose of this exercise is to become familiar with analog seismograms, identify basic 
seismic phases and use the Wadati diagram for checking the observations and calculate the 
Vp/Vs velocity ratio.  
 
For this exercise, SEISAN program lsq can be used for least squares. 
  
 
Exercise 1 
Calculate Vp/Vs using travel time tables 
 
Use the travel time table for crustal phases in Kulhanek, p53. Assume a constant velocity, 
calculate the corresponding Vp/Vs values for Pg/Sg, P*/S* and Pn/Sn at a 160 km's distance.  
-How do they compare, explain any differences.  
-Calculate the average P-velocities for the 3 types of phases at160 km epicentral distance. 
-Plot the  travel time curves and calculate the true Pn and P* velocities from the slope of the  
curve.  
-Explain the differences with the average velocities. 
 
 
Exercise 2 
Read local seismic phases and make a Wadati diagram (see Appendix 2, IS 11.1) 
 
Figure 1.1 shows a seismogram with traces of some stations. Read the P and S-arrival times 
for all stations, assume all to be first arrivals (just P and S). 
 
-Make a table of the readings. 
-Make a Wadati diagram to determine if the readings are reasonable. Put station names on the 
plot. 
-One of the stations probably has a timing problem (on the plot, the point representing the 
station is off the line). Which station ? How much is the error ? 
-Determine Vp/Vs, is it reasonable ?  
-Determine the origin time (measuring on graph is easiest). 
 
 
Exercise 3 
Read global seismic phases 
 
Figures 1.2 and 1.3  show LP Z seismograms for 2 different events. The goal of the exercise is 
to determine as many phases as possible using the Bullen tables and/or travel-time figures. 
One event is shallow and one is deep. Some idea of the depth might be obtained by comparing 
the surface waves, since a shallow event will have larger amplitude surface wave relative to P 
and S waves than a deep event. 
  
-For the shallow event, identify prominent phases on the seismograms and transfer the arrival 
times to a strip of paper which has the same time scale as one of the figures of the travel time 
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curves (Figure 1.4, figure in Bullen, also found in text books). Slide the strip of paper to 
different distances in order to fit as many phases as possible, see Figure 1.5. Once the best fit 
is obtained, write the names of the identified phases on the seismograms.  
- For the deep one event, identify the pP phase (assuming it to be the first phases after P) and 
find the depth (assume a distance of 51 degrees). The identify other phases using the Bullen 
tables or TTIM program. 
-Determine the origin time for both events and epicentral distance for the shallow event using 
the Bullen travel time table. 
 
 
Exercise 4 
 
Calculate travel times with a program 
 
The program TTIM in SEISAN calculates travel times using the IASP91 traveltime tables. 
These calculations should be more accurate than the Bullen travel times. Note that the 
program uses distance in degrees, not km. One degree is 111.1 km.  
-Compare the traveltimes for at least 5 different phases identified above as calculated with the 
Bullen tables and the IASP91 tables. Use the approximate distance calculated above 
-What is the % difference in travel times. 
 
Use the Kulhanec (p 53) travel time table for Sweden and read travel times at 250 km 
distance. 
-Make a table with the crustal phases Pg, Pn and Pb(P*), Sg, Sn and Sb. Compare travel times 
to IASP91 times and give difference in % of travel times. 
-Which crust is the fastest, IASP91 or Sweden 
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Figure 1  A seismogram of a local earthquake in Western Norway. The numbers above the 
traces to the right is the maximum count and the numbers to the left are the DC values 
(counts). The time scale on the printed page is 3 mm/s. 
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Figure 1.2  LP seismogram. The figure shows the seismogram of distant earthquake recorded 
on the WWSSN photographic system. The gain is 1500. The hand written numbers are hour 
marks and there is one minute between dots. The time scale on the printed page is 10 
mm/min. 
 
 
 
 

 
 
Figure 1.3 LP seismogram. The figure shows a LP seismogram of a distant earthquake. The 
distance between the dots is one minute. The time scale on the printed page is 5 mm/min. 
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Figure 1.4  Global travel time curves for a shallow source 
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Figure 1.5  Identification of seismic phases using the strip method. Note that the time axis is 

on horizontal axis in contrast to Figure 1.4.  Figure from Payo (1986). 
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EXERCISE  2 
 

Manual earthquake location and earthquake catalogs 
 

 
In this exercise, the purpose is to get familiar with the most basic earthquake parameters, the 
earthquake location. The first exercise deals with manual location of a local earthquake using 
S-P times while the second exercise shows how to get data from international data bases. 
 
 
Exercise 1 
Manual location using S-P times 
 
Use the arrival times read for the local event in exercise 1.  
-Assuming a P-wave velocity of 7.0 km/sec and Vp/Vs = 1.73, determine the distance to each 
station using only first arrivals and the S-P arrival  times. 
-Locate the earthquake by drawing circles, the station map is found in Figure 2.1.  
-Evaluate the error in the epicenter location. 
-Will the clock problem found for one of the station in exercise 1.2 affect the solution ? 
 
Exercise 2 
Manual location using origin time 
The origin time was determined in exercise 2.1.  
-Using a P-velocity of 7.0 km/sec, calculate the epicentral distances, how do they compare to 
the distances calculated in exercise 1 ? 
-Locate the earthquake as above, how does the location compare the location in the previous 
exercise ? 
-Will the clock problem found for one of the station in exercise 1.2 affect the solution ? 
 
 
 
Exercise 3 
Get data from international data bases 
 
The most comprehensive location for information about epicenters anywhere in the world is 
the International Seismological Center (ISC). Connect to ISC www.isc.ac.uk. 
-Select events in are 59-62 N and 0-10 E for the time period January to June, 1999 
-Make a map of the epicenters. 
-Extract the readings for the first event in the list 
-Repeat above for events in an area of your own interest 
 
Connect to the USGS earthquake information system http://neic.usgs.gov/. 
-Find list of most recent earthquakes, print map 
-Find largest earthquake in the last 5 days, give detailed information 
                                                     

 

http://www.isc.ac.uk/
http://neic.usgs.gov/
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Figure 2.1 Station map. Location of some of the stations in Western Norway. The map has the 
same scale in y and x the scale can be determined knowing that one deg latitude is 111 km. 
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Figure 2.1 EXTRA COPY.  Station map. Location of some of the stations in Western 
Norway. The map has the same scale in y and x the scale can be determined knowing that one 

deg latitude is 111 km.
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EXERCISE  3 
 

Introduction to SEISAN 
 
This exercise has the purpose to get an introduction to how to use computers for data 
processing. In previous exercises, some of the basic parameters have been described: Seismic 
phases and earthquake location. Still to be described is the magnitude of seismic events, the 
fault plane solution and spectral parameters. These are the basic parameters. A seismic 
processing system must handle all these and more parameters for many events. In addition, 
the original seismograms are in digital form, not paper records as seen so far. The SEISAN 
system can store and process all of this. In this exercise the user will get an introduction to the 
basic data base operation and how to do simple data manipulation. 
 
Background material: SEISAN manual and Appendix 3. 
 
Exercise 1 
 
The SEISAN exercises 1-4 is done. All questions must be answered and plots given in the 
report. 
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EXERCISE  4 
 

Picking phases and doing earthquake location using the computer 
                                                        
Manual earthquake locations have already been done. In practice all phase picking and 
earthquake location is done with a computer. In this exercise, both a local and a global events 
will be processed doing phase picking and location. The local event is located using a flat 
layered crustal model while the distant event is located using the IASP91 travel time table. 
 
Exercise 1 
 
-Do all exercises in SEISAN exercise 5, answer all questions. 
 
 
Exercise 2 
 
-Do SEISAN exercise 12, ‘Wadati diagram’ 
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EXERCISE  5 
 

SEISMOGRAMS AND RESPONSE FUNCTION 
 
Raw seismograms do not record the ground motion in displacement, velocity or acceleration 
directly. The aim of the exercise is to calculate true ground motion from seismograms. 
 
Seismic instruments can be divided into analog and digital instruments. In this exercise we 
will first deal with analog seismographs, then with digital instruments.  
 
The seismograph can be understood as a linear system where the input is the ground motion 
(displacement) and the output is the displacement on the seismogram. This can be visualized 
as follows 
 
 
    Input of ground motion   --> seismograph  --> seismogram 
 
Mathematically we can write: 
 
    Aout(f)  =  Ain(f) * Gain(f) 
 
where Aout is the output amplitude, Ain the input amplitude and Gain the gain of the 
seismograph, all values are frequency dependent. A typical gain curve for a classical analog 
seismograph is seen in Figure 5.2. The analog seismograph will consist of several elements 
each contributing to the gain, however the combined gain curve is often what is given. In the 
exercise, we know Aout and can therefore calculate Ain as 
 
    Ain(f)  =  Aout(f)/Gain(f) 
 
Digital seismographs can in principle be described in a similar way giving just one gain curve. 
Since digital systems has the possibility to digitally process the data, the gain curve or gain 
function will normally be complex to take into account the phase response. In this exercise we 
will calculate the gain function using the individual elements of the seismic system: 
 
 Ground motion -> seismometer -> amplifier -> filter -> A/D converter ->  Output number 
 
Each unit will linearly treat the signal so the complete gain for ground velocity Gv can be 
written: 
 
Gv(f) = Gseism (f) * Gamp(f) * Gfilt(f) * Gconv(f) 
 
Gseism is the gain of the seismometer. At a given frequency the gain could have been 
expressed as V/m, however, almost all electrodynamic seismometers have a flat response for 
velocity for frequencies above the natural frequency so gain constants for seismometers are 
expressed in terms of gain as a function of ground velocity. The gain constant is called 
seismometer generator constant and has the unit of V/(m/s). In a seismic system, it would also 
be possible to use an accelerometer as a sensor, which has a flat response for acceleration. 
The gain constant for an accelerometer is expressed in terms of V/g where g is the 
gravitational constant. 
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Gamp is the gain of the amplifier. The gain has the unit V/V (Volt in and Volt out) or number 
of times it amplifies. It is often expressed in dB which is 20*log(gain). 
 
Gfilt is the filter gain. In terms of amplitude it is here assumed to have unity gain, but the 
filter will change the phase response. The filters used here are assumed to be Butterworth 
filters. The filter frequency, whether it is high pass or low pass must be known as well as the 
steepness of the filter. The steeper the filter, the more it filters and the steepness is measured 
in number of poles. For a low pass filter with e.g. 2 poles, the amplitude will decay as 1/(f*f) 
when f is above the filter corner frequency. The unit is the same as for an amplifier. 
 
Gconv is the gain of the A/D converter (analog to digital converter). This unit converts the 
analog signal to a number to be used in the following digital processing. This number is often 
called the count value or just counts. 
 
Remember that the relationships between displacement, velocity and acceleration are: 
 
velocity = 2 * π * displacement*f               
acceleration = 2 * π * velocity*f  
 
This implies that the relationship between the gain functions for velocity and displacement, 
Gd is 
 
Gv = Gd/2πf                 
 
 
Exercise 1 
Instrument correction for a LP and SP record 
 
Figure 5.1 and 1.2 respectively gives a short period and long period records of an earthquake 
and the response curves are found in Figure 5.2. 
  
-Read maximum, amplitude and corresponding period on the SP and LP seismograms.  
-Using the response curve, calculate the corresponding ground displacement, velocity and 
acceleration. Remember to use the gain given on the seismograms to select the correct 
response curve (peaks at 1 and 25 secs for SP and LP respectively). Do interpolation if 
needed. It is convenient to calculate the amplitudes in nm or um (micrometers). 
 
 
Exercise 2 
Correction of a broad band record 
 
Figure 5.3 shows seismograms from a broad band station and Table 5.1 the response function. 
Calculate peak ground displacement for the earthquake by reading the maximum amplitude 
on the seismograms. Use the component with the largest amplitude. Note that the maximum 
count for each trace is shown on the seismogram. 
 
 
Exercise 3 
Manual gain calculation 
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Given a seismic station with the following characteristics; 
 
Seismometer free period:      1.0 sec 
Damping ratio                 0.7 
Loaded generator constant:    200 V/m/s 
Amplifier gain           :     10 000  
Filter        :              A low pass filter at 30 Hz, gain 1 
Recording media gain     :     1000 counts/V 
 
- Calculate manually the system gain at 10 Hz in terms of counts/(m/s) and counts/m. 
 
 
Exercise 4 
Correcting digitally for response 
 
In SEISAN it is possible to remove the effect of the instrument and generate a seismogram 
showing displacement in nm. This is done in picking mode in mulplt. The requirement is that 
the response file is present in the system.  
- Where is the response file and how is it made ? Print an example of the text response file.  
Chose the local earthquake (June 25 3:36, 1996) and generate the true ground motion signal 
(option Groun). Since the instrument is short period, you cannot correct for the response down 
to very low frequencies and a filter must be chosen at the same time as the instrument removal 
is done. Make displacement, velocity and acceleration signals without a filter.  
-How do the signal look, all reasonable ? If not, why ? 
Use a filter 0.1 to 10 Hz and make all 3 signals. 
-How do the signal compare to the above without filter ? 
-How do the frequency content compare in the 3 types of signals. 
Present plots of the results in your report, do not forget to put on units.. 
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Table 5.1  Response curve for station NRS. The unit for the amplification is counts/nm and 
degrees for the phase. The frequency is in Hz. 
                                                     

 
 
 
Figure 5.1 SP seismogram. The figure shows a SP seismogram from the WWSSN. The gain is 
25 000. The time scale on printed paper is 60mm/min like the original seismogram. 



 19

 
 
Figure 5.2  WWSSN displacement response curve. The maximum gain on the curve 
corresponds to the gain given on the seismogram.
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Figure 5.3  A broad band seismogram The time scale is 20 sec/mm or 2 min between tics. The 
start time is June 28, 1992 at 11:57 38.039. 
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EXERCISE 6 
 
 MAGNITUDE AND b-VALUE 
 
The purpose is to calculate magnitude both manually and by computer and use magnitude 
statistics to calculate earthquake recurrence (b-value). 
 
Exercise 1 
Coda magnitude 
 
The simplest magnitude to use for local earthquakes is the coda magnitude (also called 
duration magnitude). The coda length (tcoda) is defined as the total duration in seconds of the 
earthquake recording. The end of the record is most easily seen on filtered records or if the 
record is zoomed near the end of the recording. 
 
Coda waves are scattered waves radiating from the earthquake hypocenter. Figure 6.1 shows 
how scattered energy arrives. 

 
 
Figure 6.1  Development of P-wave coda due to scattering. Left: The enrergy arrives directly 
to the station STA from the hypocenter EQ, this is the direct P-wave. Center: Scattered energy 
arrives after the first P-arrival. If the scattering takes place further away (right), scattered 
energy arrives even later, however with a smaller amplitude. 
 
At some time, the amplitude of the scattered arrival is smaller than the amplitude of the 
background noise and this is considered the end of the coda. If the initial amplitude of the 
signal is larger (a larger magnitude), the coda length will also be larger so this explains why 
the coda length is proportional to the earthquake magnitude. The strongest amplitude of the 
earthquake signal is the S-waves, so usually it is the S-wave scattered energy that is observed 
at the end of the signal. 
 
The decay of amplitude of the scattered signal is inversely proportional to the distance it has 
travelled, in other words, the theoretical amplitude of the scattered will be inversely 
proportional to the travel time tc of the coda wave (time from origin time t0 to arrival time t): 
 

tc = t – t0                                              (6.1) 
 
and ideally we should use tc to measure the magnitude, which can be expected to only depend 
on tc. The coda magnitude scale could then be expected to have the form 
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 Mc = a Log( tc) + c      (6.2) 
 
where a and c are constants. However, the coda length tcoda is traditionally measured from the 
P-arrival time tp to the end of the signal 
 

tcoda = t –tp       (6.3) 
 
By inserting 6.1 in 6.3 we then get 
 
 tcoda = tc –(tp –t0)      (6.4) 
 
The measured coda length tcoda is therefore too short compared to the true coda length tc and 
the further the station is away from the earthquake, the smaller becomes tcoda for the same 
event, since tp increases with distance. To correct for the use of tcoda instead of tc, a 
compensation must therefore be made for distance and we can expect the scale to look like 
 
 Mc = a log(tcoda) + b dist +c     (6.5) 
 
where dist is the hypocentral distance and b is a constant.  
 
 
- Given the seismograms in Figure 6.1, determine the coda wave magnitude Mc for each 
station using the relationship 
 
Mc = 2.6 * log tcoda  +  0.001 * dist(km) - 3.0 
 
The distances dist come from exercise 2.  
 
-Calculate the average magnitude.  
-How sensitive is the magnitudes to coda lengths ? 
 
 
Exercise 2 
Local magnitude Ml 
 
The local magnitude Ml is defined as 
 
Ml = log(A) + Q(dist) 
 
Where A is the maximum amplitude on a Wood-Anderson seismogram (displacement record) 
in mm and Q(dist) is a distance correction function. The distance correction function for 
California is given in Table 6.1. 
Figure 6.2 shows the displacement seismogram for the local event used in exercise 2. The 
units of displacement is in nm. The gain of the Wood Anderson seismograph is 2180. 
 
-Read the peak displacement for the stations on Figure 6.2. 
-Convert to amplitude on a Wood-Anderson seismogram  
-Calculate Ml for all stations 
-Compare to the Mc values and evaluate 
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Exercise 3 
Manual determination of Mb and Ms 
 
Ms is calculated from the maximum surface wave amplitude on the vertical trace using the 
formula 
 
Ms = log(A/T) + 1.66log (delta) +3.3 
 
where A is the maximum amplitude in micrometers, T is the period in seconds and delta is the 
epicentral distance in degrees. Magnitude mb is calculated as 
 
Mb = log(A/T) + Q(delta,h) 
 
where A is the maximum amplitude in the P-wave train (fist 60 seconds) in nm, delta is the 
epicentral distance in degrees and h the focal depth in km. Q is a calibration function found in 
Figure 6.4. 
 
-Calculate Ms for the event in Figure 5.3 (use results from exercise 5). Assume a shallow 
depth. The distance can be calculated using the location given on the plot and Figure 7.2  
-Calculate Mb for event in Figure 6.3  Assume a  depth of 33 km and calculate distance from 
Figure 7.2.  
-Compare to the reported values (can be found in ISC printed bulletin or on ISC web site), try 
to explain any deviations. 
 
Exercise 4 
b-value 
 
Table 6.2 gives a catalog of earthquakes for Western Norway. 
-Calculate number of earthquakes in 0.2 magnitude intervals (use coda magnitude), and the 
accumulative numbers N. Show table. 
-Plot logN vs M and determine the b-value using coda magnitude. Give the relation with both 
a and b. 
-How often will you statistically get a M ≥ 6 earthquake ?.  
-Can the detection threshold be estimated ?.  
 
Do SEISAN exercise 6 
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Table 6.1   The distance correction table for Southern California. Dist is the epicentral 
distance in km and Q(dist) the distance correction. 
 
 
 
 
 Year Date HRMM  Sec Latitud Longitud Depth   Mc   Ml 
 2003  7 2 1237 56.6  59.246    6.105   9.4  0.9      
 2003  710 1303  7.0  59.292    5.616  11.5  1.4  1.2 
 2003  718 1930 22.1  60.871    5.005   0.0  1.4  1.1 
 2003  721 1428 57.4  60.952    1.437  15.0  2.5  1.5 
 2003  722 0335 26.3  60.927    1.627  15.0  2.2  1.4 
 2003  729 1542 37.7  60.696    3.744  15.0  2.3  2.5 
 2003  8 2 1912 41.6  60.108    7.204  19.7  1.1  1.0 
 2003  8 4 1943 52.6  60.692    5.507   0.1  1.0  0.6 
 2003  811 1349 42.5  60.291    4.894  52.3  0.8  1.5 
 2003  812 1537 15.1  60.192    2.486  15.0  1.8  1.3 
 2003  821 0723  1.4  60.086    4.791   0.0  2.2  2.0 
 2003  821 1159  3.0  60.839    5.029   0.6  1.4      
 2003  825 1321 21.6  59.904    6.958   3.9  0.8      
 2003  825 1823 18.0  59.281    5.298  20.0  1.3  1.1 
 2003  827 1621 32.5  59.075    5.812   0.0  1.8  1.8 
 2003  828 1501 42.5  60.694    5.594   0.0  1.3      
 2003  9 3 1334 38.5  59.242    5.706  13.1  1.6      
 2003  9 4 1402 21.2  60.863    4.987  15.0  1.2  0.8 
 2003  9 5 1440  2.0  60.567    4.966   0.0  0.6  0.7 
 2003  9 5 2117 57.1  59.474    5.675  15.0  2.2  1.9 
 2003  9 8 1027 15.2  59.646    5.581   0.0  1.5  1.0 
 2003  9 9 1332 36.6  59.211    6.178  15.6  1.3  1.0 
 2003  9 9 1803 53.0  60.691    5.378   0.1  1.6  0.8 
 2003  912 1619 11.9  60.443    4.815   0.6  1.3  1.4 
 2003  917 0155 30.4  59.604    7.316  15.3  1.7  1.4 
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 2003  917 1435 41.7  59.349    6.077   0.3  1.5  1.1 
 2003  918 1806 38.7  59.759    7.061  17.5  1.3      
 2003  919 0818  2.0  60.040    4.719   0.0  2.0  2.1 
 2003  920 1315 42.4  60.247    5.216  12.4  1.0  1.4 
 2003  920 1709 20.5  59.694    7.087  15.5  1.4      
 2003  925 1131 45.7  60.466    5.407   0.0  0.8      
 2003  928 1654 54.1  60.000    5.861   0.0  1.4  1.2 
 2003  928 2025  8.4  60.346    4.738   0.0  1.7  1.5 
 2003  929 1552 29.2  60.290    5.128   0.0  1.0      
 2003 10 2 1330 35.3  59.153    6.200  15.0  1.3      
 2003 10 2 1611  4.4  60.817    4.912   0.1  1.5  1.0 
 2003 10 9 0108  0.9  60.163    5.314   0.1  1.2  1.3 
 2003 1014 1355 39.1  60.501    4.919   0.0  1.5  0.9 
 2003 1020 0508 10.6  60.417    6.012  13.0  0.9  0.9 
 2003 1020 1331 16.0  59.378    6.034  13.8  1.4      
 2003 1020 1620 21.0  59.150    7.611  11.3  1.7      
 2003 1021 1432 41.3  60.674    5.460   0.0  1.6  0.9 
 2003 1022 1400 44.5  60.519    4.944   0.0  1.3      
 2003 1023 1419 18.9  60.300    5.295   3.5  1.1      
 2003 1028 1803 55.8  60.758    5.242   1.5  1.2      
 2003 1031 1605 51.0  60.832    5.013   9.2  1.5      
 2003 11 6 0343 50.8  60.747    4.573   0.0  0.9  1.1 
 2003 11 9 0459 58.9  59.619    7.105  12.6  1.6  0.8 
 2003 1110 2302 54.9  59.215    5.805   0.0  1.2  1.0 
 2003 1113 1301  3.6  60.512    5.349   0.0  0.7  1.4 
 2003 1113 1306 21.2  60.677    5.487   0.1  1.4  0.8 
 2003 1120 1109 31.8  59.333    5.657   2.3  1.6  1.2 
 2003 1121 1310  8.1  60.477    5.350   0.0  0.5  0.8 
 2003 1122 1908 58.2  60.218    2.545  15.0  2.6  2.2 
 2003 1125 1832 15.8  59.665    2.465   0.0  1.9  1.1 
 2003 1127 0317 49.6  59.914    6.215   0.0  0.7  0.6 
 2003 1128 1252  0.6  60.276    5.301   6.2  0.2  0.5 
 2003 1128 1529 31.3  60.189    5.312  11.4  0.8  0.8 
 2003 12 1 1404  6.6  60.713    5.339   0.0  1.6  1.1 
 2003 12 1 1501 52.0  60.162    5.237  16.1  0.7  0.4 
 2003 12 4 1449 16.1  60.544    4.959   0.1  1.4  1.3 
 2003 12 8 2353  9.8  60.323    7.252   3.1  1.8  1.7 
 2003 12 9 1400  1.2  59.492    4.473   0.1  1.2  1.6 
 2003 1211 1404 50.0  60.291    5.294   0.0  0.8  1.1 
 2003 1211 1454 29.8  60.695    5.568   1.8  1.4  0.8 
 2003 1212 0007 13.4  60.489    4.734  21.1  1.1  1.0 
 2003 1212 0315  6.7  59.857    6.523   0.0  1.5  1.3 
 2003 1212 1516  7.0  60.846    5.102   1.5  1.4  0.6 
 2003 1217 1433 40.9  59.315    5.675   0.0  1.5  1.1 
 2003 1219 1020 30.0  59.376    6.078   0.1  1.1      
 2003 1219 1328 25.4  60.669    5.558   0.1  1.5      
 2003 1225 1400 27.7  59.655    6.000  15.0  1.9  1.8 
 
Table 6.2  Catalog of events  
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Figure 6.1  Seismogram of a local earthquake, same as in exercise 2 
                                                   

 
Figure 6.2  Wood Anderson simulated displacement seismogram. The number above traces to 
the right is maximum amplitude in nm. 
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Figure 6.3  P-wave for a distant earthquake recorded in S. Norway. The vertical scale is nm 
and the maximum amplitude is marked above the trace to the right. The origin is 1996 0603 
1955 31.8, the hypocenter has latitude 46.787 N, longitude 153.722 W  and depth 33.0 km. 
The time scale is 2 mm/sec. 
 

 
Figure 6.4   Calibration function for mb. It is assumed that the amplitude is measured in nm.
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 EXERCISE 7  
 
  Using a single station or array for azimuth determination 
 
 
The purpose of this exercise is to locate an event with a single three component station or an 
array.  
Global phases are best recorded on standard LP and SP seismographs sine most of the energy 
is below 1 Hz. On high gain local networks, a few global events are also located. Global (and 
local) events can be located with a single 3C station or a seismic array. The 3C location 
method is described in Appendix 2. 
 
Using a seismic array, the apparent velocity and azimuth to the event can be determined as 
follows: Considering a plane wave arriving at the 3 stations shown below at times t0, t1 and 
t2, then the following equations can be set up: 
 

 
Figure  7.1  A 3 station array. The station are labeled  0,1,2 and station 0 is placed at the 
origin of the coordinate system. The vectors from the origin to station 1 and two are labeled  
r1 and r2 respectively and Az is the azimuth of arrival. 
 
 
t1 - t0 = r1 * p                                          (1) 
t2 - t0 = r2 * p 
 
where r1 and r2 are the vectors form station 0 to station 1 and 2 respectively and p is the 
slowness vector defined as p=s/v, where s is the normal vector to the wave front and v the 
apparent velocity. Equation 1 can be written out as 
 
t1 - t0 = r1x * px  +  r1y * py                      (2) 
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t2 - t0 = r2x * px  +  r2y * py 
 
where px and py are the x and y components of the p-vector and corresponding for r1x etc. 
Thus knowing the arrival times at the 3 stations, px and py can be determined (2 equations 
with 2 unknowns). From px and py, v and azimuth can be determined: 
 
tg(Az) = px/py 
 
v = sqrt (1/(px*px + py*py)) 
 
Note that the azimuth above is away from the event, while the azimuth needed to find the 
epicenter is from the station to the event and 180 deg must be added. Since it is possible to get 
the epicentral distance from the apparent velocity, a location can be made. 
 
 
Exercise 1 
Azimuth and velocity from a three station array 
 
An array has the following station location (coordinates in km): 
Station 0  (0,0) 
Station 1  (100,0) 
Station 2  (0,200) 
 
A P-wave is arriving at times t0=0 sec, t1= 7 sec and t2= 13 sec.  
-Calculate the azimuth and apparent velocity.  
-From the Bullen table, get the distance to the earthquake. Remember that the Bullen table 
gives the apparent velocity in sec/degree, so the easiest is to convert from km/sec to sec/deg 
before looking up in the table (1 degree = 111.1 km). Assume a depth of 33 km.  
-Use Figure 7.2  to get an approximate location assuming the array is located in Bergen. 
-Describe how you would find px and py if you had e.g. 10 stations. 
 
 
Exercise 2 
Azimuth from a three component station 
 
-Using the 3C seismogram in Figure 7.3, calculate the az of approach.  
-Read the S-P time on Figure 7.4 and find the distance from Bullen or a travel time curve 
assuming a depth of 33 km..  
-Locate the event using Figure 7.2 and give latitude, longitude and origin time.. 
-Compare to the real solution (found e.g. in ISC bulletin). 
 
 
Exercise 3 
Azimuth determination by computer 
 
-Do SEISAN exercise 12, ‘3 component analysis for azimuth determination’. Describe results 
and uncertainties in determination. 
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Figure 7.2  World map 
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Figure 7.2  World map, extra copy
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Figure 7.3  A three component recording, only the first P is shown. the time scale is 20 
mm/sec. 

 
Figure 7.4  The complete cording of the event in Figure 7.2. A filter is used to enhance the 
low frequencies. The time scale is 20 mm/min. 
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 EXERCISE 8 
 
 FAULT PLANE SOLUTION 
 
In this exercise, fault plane solutions will be determined both manually and with SEISAN for 
both local and global events. Background material is found in Appendix 2 including a stereo 
net. 
 
Exercise 1 
Manual fault plane solution for a local event 
 
Do exercise 3.2 in Appendix 2, task 1-7, 9, 12-14. 
 
Exercise 2 
Manual fault plane solution from a distant event 
 
Table 8.1 is an earthquake bulletin for ISC. Only stations which reported polarity (p or d) are 
given. 
Get angle of incidence from distances using Table 8.2. For stations at distances less than 20 
deg., calculate the angle assuming all phases to be Pn and the Moho velocity is 8 km/s and the 
velocity above Moho is 7 km/s. Then plot on a stereo net and find the fault plane solution. Put 
the T and P-axis on the solution. Measure the angles of the 2 fault plane solutions and the T 
and P-axis. From the angles of the P and T axis, calculate strike, dip and rake using the 
Focmec program type focmec a. Compare to the solution given by ISC by plotting the 
solution on the same figure. 
-Which kind of fault do the solution represent.  
 
 
Exercise 3 
Fault plane solution done by computer 
 
Do SEISAN exercise 7 
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      rms   OT_error      Smajor Sminor Az        Err   mdist  Mdist     Err        Err        

Err     Quality 

 

2000/01/06 10:42:22.8     58.0180 -141.0300      1.0 f          5 351  MS 5.7     mb 5.1     

mb 5.5     BER        3544558 

      1.60   +-  4.86      94.3  581.3   -1                                                                   

2000/01/06 10:42:25.0     58.0000 -136.9000      5.0           58      Ms 6.5        6.1     

mB 5.9     BJI        3017104 

      1.70                                                                                                    

2000/01/06 10:42:25.0 f   58.0400 -136.8700 f    1.0 f        371  31     5.9 73  Me 6.2     

Mw 6.1     NEIC       3050653 

                                                          1.29 150.19                                       

fe 

    (#FAULT_PLANE Typ Strike   Dip    Rake  NP  NS Plane Author   ) 

    (#            BB  345.00 78.00 -178.00               NEIC     ) 

    (+            BB  255.00 88.00  -12.00               NEIC     ) 

    (#PRINAX sc  T_val T_azim  T_pl  B_val B_azim  B_pl  P_val P_azim  P_pl Author   ) 

    (#                 300.00  7.00          0.00  0.00        209.00 10.00 NEIC     ) 

      (#MOMTENS sc    MO fCLVD    MRR    MTT    MPP    MRT    MTP    MPR NST1 NST2 Author   ) 

    (#             eMO eCLVD    eRR    eTT    ePP    eRT    eTP    ePR NCO1 NCO2 duration ) 

    (#        18 1.500        0.170 -0.950  0.780  0.120  1.180 -0.080   43      NEIC     ) 

    (#                                                                                    ) 

    (#FAULT_PLANE Typ Strike   Dip    Rake  NP  NS Plane Author   ) 

    (#            BDC 252.00 86.00   -3.00               NEIC     ) 

    (+            BDC 342.00 87.00 -176.00               NEIC     ) 

    (#PRINAX sc  T_val T_azim  T_pl  B_val B_azim  B_pl  P_val P_azim  P_pl Author   ) 

    (#       18  1.380 117.00  1.00  0.180  16.00 85.00 -1.560 207.00  5.00 NEIC     ) 

      (Depth from synthetics of broadband displacement seismograms. Energy computed from BB 

mechanism.) 

    (After preliminary solution from PGC.) 

    (Felt strongly at Elfin Cove, Gustavus, Haines, Hoonah, Juneau and Sitka. Also felt at 

Petersburg, Skagway and Yakutat. Felt as far a) 

    ( Whitehorse, Yukon Territory) 

    (#PARAM BROADBAND_DEPTH=12.0 SEISMIC_ENERGY=4.8E13+0.7E13) 

2000/01/06 10:42:25.8     58.0680 -136.8081      1.0 f     9    6      ML 6.1  4                        

PGC        3443410 

      0.37                  3.3    1.8   -1                             +-0.2                               

ke 

    (Coast of southeastern Alaska.) 

2000/01/06 10:42:27.0     58.2071 -136.7483      0.0 f    21   17 155  ML 4.8  3  MS 5.8 11  

mb 4.9 11  EIDC       3009581 

      0.73   +-  0.77      19.1   12.0   33               3.55 147.87   +-0.4      +-0.1      

+-0.1         uk 

2000/01/06 10:42:29.4     58.2074 -136.7458     33.0      28   28      Mb 5.5 31  Ms 5.9  6             

LDG        3029562 

             +-  0.42      21.4   14.7   11    +-  0.0   61.97  98.38   +-0.2      +-0.1                    

ke 

2000/01/06 10:42:29.8     58.1230 -136.9790     33.0     109           MS 5.8 34  mb 5.7 31             

MOS        3023607 

             +-  1.07      11.5    4.1   21                                                                  

2000/01/06 10:42:32.8     58.2700 -136.8000                            Mw 6.1                           

HRVD       3050654 

             +-  0.10       0.0    0.0   -1                                                                 

se 

    (#CENTROID) 

    (#MOMTENS sc    MO fCLVD    MRR    MTT    MPP    MRT    MTP    MPR NST1 NST2 Author   ) 

    (#             eMO eCLVD    eRR    eTT    ePP    eRT    eTP    ePR NCO1 NCO2 duration ) 



 35

    (#        18 1.600       -0.120 -0.840  0.960  0.800  1.030 -0.160   60   55 HRVD     ) 

    (#                        0.010  0.010  0.010  0.040  0.010  0.040  151  105     5.40 ) 

    (#FAULT_PLANE Typ Strike   Dip    Rake  NP  NS Plane Author   ) 

    (#            BDC 343.00 65.00 -166.00               HRVD     ) 

    (+            BDC 247.00 77.00  -25.00               HRVD     ) 

    (#PRINAX sc  T_val T_azim  T_pl  B_val B_azim  B_pl  P_val P_azim  P_pl Author   ) 

    (#       18  1.460 297.00  8.00  0.260  42.00 62.00 -1.720 203.00 27.00 HRVD     ) 

      (Data Used: GSN.) 

    (#PARAM pP_DEPTH=15) 

2000/01/06 10:42:44.5     60.7430 -140.4150      1.0 f          5      mb 4.6                           

NAO        3544559 

                                                                                                             

2000/01/06 10:42:55.1     61.8000 -134.1000     10.0      27   27 358  mb 5.9 27                        

ZUR        3529774 

      0.26                                               66.75  68.36   +-0.3                               

uk 

2000/01/06 10:42:25.3     58.1340 -136.9340      1.0 f   476  515 117  MS 5.9     mb 5.5                

ISC        3630399 

      1.14   +-  0.13       2.6    2.3   90               1.38 157.06                                   

m i    

    (#PARAM pP_DEPTH=8.7+1.64 ) 

 

SOUTHEASTERN ALASKA 

ta     Dist  EvAz     Phase      Date       Time     TRes  Azim  AzRes  Slow  

HYT     2.71 354.1  d  PN      2000/01/06 10:43:11.1   0.3                     

WHY     2.74  21.6  d  PN      2000/01/06 10:43:11.5   0.3                     

BNAB    5.85 140.0  c  PN      2000/01/06 10:43:51.6  -3.6                     

DAWY    6.07 349.7  d  PN      2000/01/06 10:43:58.0  -0.4                     

BMBC    8.33  98.2  d  P       2000/01/06 10:44:27.2  -2.9                     

DOWB   12.49 114.1  c  P       2000/01/06 10:45:25.7  -1.2                     

PNT    13.49 123.4  c  P       2000/01/06 10:45:40.6   0.3                     

ULM    24.94  90.5  d  P       2000/01/06 10:47:50.4  -0.6                     

KLR    50.79 302.2  di P       2000/01/06 10:51:28.7   0.0                     

BOD    51.35 319.6  ci P       2000/01/06 10:51:32.6  -0.2                     

IRK    59.21 321.2  ce P       2000/01/06 10:52:29.0  -0.8                     

SNY    60.14 301.8  d  P       2000/01/06 10:52:34.2  -2.2                     

MOY    60.80 322.8  ce P       2000/01/06 10:52:41.3   0.6                     

UKR    66.06 332.6  ci P       2000/01/06 10:53:14.5  -0.7                     

MOS    66.40   3.4  ci P       2000/01/06 10:53:13.9  -3.4                     

CLL    68.18  19.8  c  P       2000/01/06 10:53:28.8   0.1                     

SLE    70.67  23.9  de P       2000/01/06 10:53:43.5  -0.5                6.4  

BOURR  70.75  24.9  de P       2000/01/06 10:53:44.7   0.2                6.4  

ZLA    70.92  24.1  de P       2000/01/06 10:53:45.4  -0.1                6.4  

KAMOR  71.33  23.4  de P       2000/01/06 10:53:48.6   0.6                6.4  

APL    71.39  24.4  de P       2000/01/06 10:53:48.7   0.3                6.4  

BNALP  71.50  24.3  de P       2000/01/06 10:53:49.9   0.8                6.4  

HASLI  71.55  24.5  de P       2000/01/06 10:53:50.0   0.6                6.4  

LLS    71.65  23.9  de P       2000/01/06 10:53:50.3   0.4                6.4  

LLS    71.65  23.9  de P       2000/01/06 10:53:50.6                      6.4  

AIGLE  71.68  25.5  de P       2000/01/06 10:53:50.2   0.1                6.4  

DAVON  71.83  23.4  de P       2000/01/06 10:53:52.1   1.1                6.4  

FUSIO  71.95  24.3  de P       2000/01/06 10:53:52.7   1.0                6.4  

BOG    72.00 111.1  ci P       2000/01/06 10:53:57.5   4.9                     

DIX    72.03  25.2  de P       2000/01/06 10:53:52.8   0.6                6.4  

DIX    72.03  25.2  de P       2000/01/06 10:53:53.2                      6.4  

OSS    72.05  23.2  de P       2000/01/06 10:53:52.9   0.6                6.4  

VDL    72.09  23.7  de P       2000/01/06 10:53:53.8   1.2                6.4  

MMK    72.18  24.9  de P       2000/01/06 10:53:54.4   1.3                6.4  
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MCGN   72.27  24.9  c  P       2000/01/06 10:53:55.3   1.6                     

BERNI  72.28  23.3  de P       2000/01/06 10:53:54.9   1.2                6.4  

WHN    73.63 301.6  d  P       2000/01/06 10:54:01.6  -0.2                     

ASS    76.02  22.5  c  P       2000/01/06 10:54:15.9   0.6                     

MNS    76.69  22.6  c  P       2000/01/06 10:54:19.3   0.2                     

NURP   85.83 332.6  ci P       2000/01/06 10:55:04.2  -3.1                     

SHL    87.23 317.1  ci P       2000/01/06 10:55:14.0  -0.3                     

 

Table 8.2   ISC bulletin, extract.
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EXERCISE 9 
 
 SPECTRAL ANALYSIS 
 
The purpose is to determine common spectral parameter: Seismic moment, corner frequency, 
source size and stress drop. 
 
 
Exercise 1  
Manual spectral analysis 
 
Do exercise 3.4 from Appendix 2 
 
 
Exercise 2 
Spectral analysis of a local event using SEISAN 
 
-Do SEISAN exercise 8, give screen dumps of results. 
 
 
Exercise 3 
Velocity and acceleration spectra 
 
-Using the event for exercise 2, select a good station and make the velocity and acceleration 
spectra. Do not use station KONO since it has a low sample rate. Limit the frequency band of 
spectrum to range with good signal to noise ratio. 
-Explain how spectra are expected to look and why. 
-Do the spectra look as expected ?  
-What is the y-axis unit of all 3 types of spectra ? 
 
 
Question 4 
Spectrum and Q 
 
The spectral shape is dependent on the Q-values used for spectral correction. Make the P-
wave displacement spectrum for the signal used for one station under exercise 2 using Q0=10 
and Q0=100 and qalpha=0.5. The Q-value is changed in file MULPLT.DEF in directory 
DAT.  
-Compare the spectral values and spectral shape and explain any differences. 
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EXERCISE 10 
 
 Analysis of a set of local events 
 
Using the skills acquired in previous exercises, a set of 10 local events will be used to do a 
comprehensive analysis. The data set consists of 10 waveform files, a station file and 
calibration files. 
 
Exercise 1 
Create a data base with a name of your choice, register the events into the data base. Install 
calibration files and station files. 
 
Exercise 2 
Locate all events and calculate Mc, Ml and Mw, check all events for reasonable fit, RMS 
should be less than 1.0 s. Check that, for each event, that there is a consistency between 
different types of magnitudes. 
 
Exercise 3 
Make an epicentral map. 
 
Exercise 4 
Compare the magnitude types obtained using program mag. This mens plotting Ml versus Mc 
and Ml versus Mw. How is the comparison ? 
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1 Introduction 
 
The exact location of a source, radiating seismic energy, is one of most important tasks in 
practical seismology and most seismologists have been from time to time involved in this 
task. The intention with this document is to describe the most common location methods 
without going into the mathematical details, which have been described in numerous 
textbooks and scientific, but to give some practical advice on earthquake location. 
 
The earthquake location is defined by the earthquake hypocenter (x0, y0, z0) and the origin time 
t0. The hypocenter is the physical location, usually given in longitude (x0), latitude (y0), and 
depth below the surface (z0 [km]). For simplicity, the hypocenter will be labeled x0, y0, z0 with 
the understanding that it can be either measured in geographical or Cartesian coordinates, i.e., 
in [deg] or [km], respectively. The origin time is the start time of the earthquake rupture. The 
epicenter is the projection of the earthquake location on the Earth’s surface (x0, y0). When the 
earthquake is large, the physical dimension can be several hundred kilometers and the 
hypocenter can in principle be located anywhere on the rupture surface. Since the hypocenter 
and origin time are determined by arrival times of seismic phases initiated by the first rupture, 
the computed location will correspond to the point where the rupture initiated and the origin 
time to the time of the initial rupture. This is also true using any P- or S-phases since the 
rupture velocity is smaller than the S-wave velocity so that P- or S-wave energy emitted from 
the end of a long rupture will always arrive later than energy radiated from the beginning of 
the rupture. Standard earthquake catalogs (such as from the International Seismological 
Center, ISC) report location based primarily on arrival times of high frequency P-waves. This 
location can be quite different from the centroid time and location obtained by moment tensor 
inversion of long period waves. The centroid location represents the average time and location 
for the entire energy radiation of the event. 
 
 

mailto:jens@ifjf.uib.no
mailto:course@gfz-potsdam.de
mailto:johannes.schweitzer@norsar.no
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2 Single station location 
 
In general, epicenters are determined using many arrival times from different seismic stations 
and phases. However, it is also possible to locate an earthquake using a single 3-component 
station. Since the P-waves are vertically and radially polarized, the vector of P-wave motion 
can be used to calculate the backazimuth to the epicenter (see Figure 1). The radial 
component of P will be recorded on the 2 horizontal seismometers N(orth) and S(outh) and 
the ratio of the amplitudes AE/AN on the horizontal components can be used to calculate the 
backazimuth of arrival AZI: 
 
    AZI = arctan AE/AN             (1) 
 
There is then an ambiguity of 180° since the first polarity can be up or down so the polarity 
must also be used in order to get the correct backazimuth. If the first motion on vertical 
component of the P is upward, (which corresponds by definition to a compressional first 
motion (FM) arriving at the station related to an outward directed motion at the source then 
the radial component of P is directed away from the hypocenter. The opposite is true if the P-
polarity is negative (see also Figure 1 in Exercise EX 11.2).  
 
 

       
 
Figure 1  Example of P-wave first motions in 3-component records (left) from which the 
backazimuth AZI and incidence angle i can be derived according to Eqs. (1) and (2) (middle).  
 
 
The amplitude AZ of the Z-component can, together with the amplitude AR = √ (AE

2 + AN
2) on 

the radial components, also be used to calculate the apparent angle of incidence iapp = arc tan 
AR / AZ of a P-wave. However, according already to Wiechert (1907) the true incidence angle 
itrue of a P-wave is 
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itrue = arcsin (
S

P

v
v  × sin 0.5iapp),        (2) 

 
with the difference accounting for the amplitude distortion due to the reflection at the free 
surface. Knowing the incidence angle i and the local seismic velocity vc below the observing 
station, we can calculate the apparent velocity vapp of this seismic phase with 
 

sini
vv c

app =       (3) 

 
With high frequency data it might be difficult to manually read the amplitudes of the first 
break or sometimes the first P-swings are emergent. Since the amplitude ratio between the 
components should remain constant not only for the first swing of the P-phase but also for the 
following oscillations of the same phase, we can, with digital data, use the predicted 
coherence method (Roberts et al., 1989) to automatically calculate backazimuth as well as the 
angle of incidence. Since this is much more reliable and faster than using the manually 
readings of the first amplitudes, calculation of backazimuth from 3-component records of 
single stations has again become a routine practice (e.g., Saari, 1991). In case of seismic 
arrays, apparent velocity and backazimuth can be directly measured by observing the 
propagation of the seismic wavefront with array methods (see Chapter 9). As we shall see 
later, backazimuth observations are useful in restricting epicenter locations and in associating 
observations to a seismic event. Knowing the incidence angle and implicitly the ray parameter 
of an onset helps to identify the seismic phase and to calculate the epicentral distance. 

 
With a single station we have now the direction to the seismic source. The distance can be 
obtained from the difference in arrival time of two phases, usually P and S. If we assume a 
constant velocity, and origin time t0, the P- and S-arrival times can then be written as  
 
   tp = t0 + D/vp                                  ts = t0 + D/vs        (4) 
 
where tp and ts are the P- and S-arrival times respectively, vp and vs are the P- and S-velocities 
respectively and D is the epicentral distance (near) for surface sources and the hypocentral 
distance for deeper sources. By eliminating t0 from Eq. (4), the distance can be calculated as 
 

sp

sp
ps vv

vv
)t(tD

−

⋅
−=        (5) 

 
with D in km and ts – tp in seconds. But Eq. (5) is applicable only for the travel-time 
difference between Sg and Pg, i.e., the direct crustal phases of S and P, respectively. They are 
first onsets of the P- and S-wave groups of local events only for distances up to about 100 – 
250 km, depending on crustal thickness and source depth within the crust. Beyond these 
distances the Pn and Sn, either head waves critically refracted at the Mohorovičić 
discontinuity or waves diving as body waves in the uppermost part of the upper mantle 
become the first onsets (see Fig. 7). The “cross-over” distance xco between Pn and Pg (or Pb) 
can be approximately calculated for a (near) surface focus from the relationship 
 

   xco = 2 zm {(vm –⎯vp) (vm +⎯ vp)}-1/2,     (6) 
 



 90

with ⎯vp – average crustal P-velocity, vm – sub-Moho P-velocity, and zm – crustal thickness. 
Inserting the rough average values of⎯vc = 6 km/s and vm =  8 km/s we get, as a “rule of 
thumb”, xco ≈ 5 zm. At smaller distances we can be rather sure that the observed first arrival is 
Pg. Note, however, that this “rule of thumb” is valid for surface focus only. As demonstrated 
with Fig. 2.40 in Chapter 2, the crossover distance is only about half as large for near Moho 
earthquakes and also the dip of the Moho and the direction of observation (up- or downdip) 
does play a role. However, in continental (intraplate) environment, lower crustal earthquakes 
are rare. Mostly they occur in the upper crust. 
 
Examples for calculating the epicentral distance D and the origin time OT of near seismic 
events by means of a set of local travel-time curves for Pn, Pg, Sn, Sg and Lg are given in 
exercise EX 11.1. In the absence of local travel-time curves for the area under consideration 
one can use Eq. (5) for deriving a “rule of thumb” for approximate distance determinations 
from travel-time differences Sg-Pg. For an ideal Poisson solid vs = vp/ 3 . This is a good 
approximation for the average conditions in the Earth crust: With this follows from Eq. (5) : D 
= (tSg – tPg) × 8.0 for “normal, medium age” crustal conditions with ⎯vp = 5.9 km/s, and D = 
(tSg – tPg) × 9.0 for old Precambrian continental shields with rather large ⎯vp = 6.6 km/s. 
However, if known, the locally correct vp/vs ratio should be used to improve this “rule of 
thumb”. If the distance is calculated from the travel-time difference between Sn and Pn 
another good rule of thumb is D = (tSn – tPn) × 10. It may be applicable up to about 1000 km 
distance.  
 
For distances between about 20o < Δ < 100o the relationship Δo = {(ts – tp )min - 2} × 10 still 
yields reasonably good results with errors < 3°, however, beyond D = 10° the use of readily 
available global travel-time tables such as IASP91 (Kennett and Engdahl, 1991; Kennett, 
1991), SP6 (Morelli and Dziewonski, 1993), or AK135 (Kennett et al., 1995) is strongly 
recommended  for calculating  the distance.  
 
With both backazimuth and distance, the epicenter can be obtained by measuring off the 
distance along the backazimuth of approach. Finally, knowing the distance, we can calculate 
the P-travel time and thereby get the origin time using the P-arrival time (see Exercise EX 
11.2: Manual localization of teleseismic events by means of 3-component records).  
 
 
3 Multiple station location 
 
3.1 Manual location 
 
When at least 3 stations are available, a simple manual location can be made from drawing 
circles (the circle method) with the center at the station locations and the radii equal to the 
epicentral distances calculated from the S-P times (Figure 2). 
 
These circles will rarely cross in one point which indicates errors in the observations and/or 
that we have wrongly assumed a surface focus. In fact, ts – tp is the travel-time difference for 
the hypocentral distance d which is for earthquakes with z > 0 km generally larger than the 
epicentral distance Δ (or D). Therefore, the circles drawn around the stations with radius d 
will normally not be crossing in a single point at the epicenter but rather “overshoot”. One 
should therefore fix the epicenter either in the “center of gravity” of the overshoot area (black 
area in Figure 2) or draw “chords”, i.e., straight lines passing through the crossing point 
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between two neighboring circles. These chord lines intersect in the epicenter (see Figure 1 in 
Exercise EX 11.1). Still other methods exist (e.g., Båth, 1979) to deal with this depth problem 
(e.g., the hyperbola method which uses P-wave first arrivals only and assumes a constant P-
wave velocity), however since they are rarely used, they will not be discussed here. 
 

    
 
Figure 2  Location by the “circle and chord” method. The stations are located in S1, S2 and 
S3. The epicenter is found within the shaded area where the circles overlap. The best estimate 
is the crossing of the chords, which connect the crossing points of the different pairs of 
circles.  
 
 
With several stations available from a local earthquake, the origin time can be determined by 
a very simple technique called a Wadati diagram (Wadati, 1933). Using Eq. (7) and 
eliminating Δ, the S-P travel-time difference can be calculated as  
 

ts – tp = (vp/vs – 1) × (tp - t0)             (7) 
 
The S-P times are plotted against the absolute P-time. Since ts – tp goes to zero at the 
hypocenter, a straight line fit on the Wadati diagram (Figure 3) gives the origin time at the 
intercept with the P-arrival axis and from the slope of the curve, we get vp/vs. Note that it is 
thus possible to get a determination of both the origin time and a mean vp/vs ratio without any 
prior knowledge of the crustal structure, the only assumption is that vp/vs is constant and that 
the P- and S-phases are of the same type like Pg and Sg or Pn and Sn. Such an independent 
determination of these parameters can be very useful when using other methods of earthquake 
location. 
 
The Wadati diagram can also be very useful in making independent checks of the observed 
arrival times. Any points not fitting the linear relationship might be badly identified, either by 
not being of the same phase type or by misreading. 
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Figure 3  An example of a Wadati diagram. The intercept on the x-axis gives the origin time. 
The slope of the line is 0.72 so the vp/vs ratio is 1.72. Note that the points do not exactly fit the 
line, indicating model and/or data reading errors (from Lay and Wallace, 1995). 
 
 
3.2 Computer location 
 
Manual location methods provide insight into the location problems, however in practice we 
use computer methods. In the following, the most common ways of calculating hypocenter 
and origin time by computer will be discussed. 
 
The calculated arrival time ti

c
 at station i can be written as 

 
ti

c = T(xi, yi,, zi, x0, y0, z0) + t0     (8) 
 
where T is the travel time as a function of the location of the station (xi, yi, zi) and the 
hypocenter. This equation has 4 unknowns, so in principle 4 arrival time observations from at 
least 3 stations are needed in order to determine the hypocenter and origin time. If we have n 
observations, there will be n equations of the above type and the system is over determined 
and has to be solved in such a way that the misfit or residual ri at each station is minimized. ri 
is defined as the difference between the observed and calculated travel times 
 

ri = ti
o- tc

i .       (9) 
 

In principle, the problem seems quite simple. However, since the travel-time function T is a 
nonlinear function of the model parameters, it is not possible to solve Eq. (8) with any 
analytical methods. So even though T can be quite simple calculated, particularly when using 
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a 1D Earth model or pre-calculated travel-time tables, the non-linearity of T greatly 
complicates the task of inverting for the best hypocentral parameters. The non-linearity is 
evident even in a simple 2D epicenter determination where the travel time ti from the point (x, 
y) to a station (xi, yi) can be calculated as 
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where v is the velocity. It is obvious that ti does not scale linearly with either x and y so it is 
not possible to use any set of linear equations to solve the problem and standard linear 
methods cannot be used. This means that given a set of arrival times, there is no simple way 
of finding the best solution. In the following, some of the methods of solving this problem 
will be discussed. 
 
 
3.2.1 Grid search 
 
Since it is so simple to calculate the travel times of all seismic phases to any point in the 
model, given enough computer power, a very simple method is to perform a grid search over 
all possible locations and origin times and compute the arrival time at each station (e.g., 
Sambridge and Kennett, 1986). The hypocentral location and origin time would then be the 
point with the best agreement between the observed and calculated times. This means that 
some measure of best agreement is needed, particularly if many observations are used. The 
most common approach is least squares which is to find the minimum of the sum of the 
squared residuals e from the n observations: 
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The root mean squared residual RMS, is defined as e/n . RMS is given in almost all location 
programs and commonly used a guide to location precision. If the residuals are of similar size, 
the RMS gives the approximate average residual. As will be seen later, RMS only gives an 
indication of the fit of the data, and a low RMS does not automatically mean an accurate 
hypocenter determination. Generally, the precision of the computational solution, which is 
based on various model assumptions, should not be mistaken as real accuracy of the location 
and origin time. This point will be discussed later under section 7. 

 
The average squared residual e/n is called the variance of the data. Formally, n should here be 
the number of degrees of freedom ndf, which is the number of observations minus the number 
of parameters in fit (here 4). Since n usually is large, it can be considered equal to the number 
of degrees of freedom. This also means that RMS2 is approximately the same as the variance. 
The least squares approach is the most common measure of misfit since it leads to simple 
forms of the equations in the minimization problems (see later). It also works quite well if the 
residuals are caused by uncorrelated Gaussian noise. However in real problems this is often 
not the case. A particularly nasty problem is the existence of outliers, i.e., individual large 
residuals. A residual of 4 will contribute 16 times more to the misfit e, than a residual of 1. 
Using the sum of the absolute residuals as a norm for the misfit can partly solve this problem:  
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This is called the L1 norm and is considered more robust when there are large outliers in the 
data. It is not much used in standard location programs since the absolute sign creates 
complications in the equations. This is of course not the case for grid search. Therefore, most 
location programs will have some scheme for weighting out or truncating large residuals (see 
later), which can partly solve the problem. 
 
Once the misfits (e.g., RMS) have been calculated at all grid points, one could assign the point 
with the lowest RMS as the ‘solution’. For well-behaved data, this would obviously be the 
case, but with real data, there might be several points, even far apart, with similar RMS and 
the next step is therefore to estimate the probable uncertainties of the solution. The simplest 
way to get an indication of the uncertainty, is to contour the RMS as a function of x and y (2D 
case) in the vicinity of the point with the lowest RMS (Figure 4). 
 

  
 
Figure 4 Left: RMS contours (in seconds) from a grid search location of an earthquake off 
western Norway (left). The grid size is 2 km. The circle in the middle indicates the point with 
the lowest RMS (1.4 s). Right: The location of the earthquake and the stations used. Note the 
elongated geometry of the station distribution. Its effect on the error distribution will be 
discussed under 4.1. The RMS ellipse from the figure on the left is shown as a small ellipse in 
the figure at right. Latitudes are degrees North and longitudes degrees East. 
 
 
Clearly, if RMS is growing rapidly when moving away from the minimum, a better solution 
has been obtained than if RMS grows slowly. If RMS is contoured in the whole search area, 
other minima of similar size might be found indicating not only large errors but also a serious 
ambiguity in the solution. Also note in Fig. 4 that networks with irregular aperture have 
reduced distance control in the direction or their smallest aperture but good azimuth control in 
the direction of their largest aperture. 
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An important point in all grid-search routines is the method how the possible model space is 
searched through. In particular for events observed at teleseismic distances the model space 
can be very large. Sambridge and Kennett (2001) published a fast neighbourhood algorithm to 
use for global grid search. 
 
3.2.2 Location by iterative methods 
 
Despite increasing computer power, earthquake locations are mainly done by other methods 
than grid search. These methods are based on linearizing the problem. The first step is to 
make a guess of hypocenter and origin time (x0, y0, z0, t0). In its simplest form, e.g., in case of 
events near or within a station network, this can be done by using a location near the station 
with the first arrival time and using that arrival time as t0. Other methods also exist (see 
below). In order to linearize the problem, it is now assumed that the true hypocenter is close 
enough to the guessed value so that travel-time residuals at the trial hypocenter are a linear 
function of the correction we have to make in hypocentral distance. 
 
The calculated arrival times at station i, ti

c from the trial location are, as given in Eq. (8), ti
c = 

T(x0, y0, z0, xi, yi, zi) + t0 and the travel-time residuals ri are ri = ti
o – ti

c . We now assume that 
these residuals are due to the error in the trial solution and the corrections needed to make 
them zero are Δx, Δy, Δz, and Δt. If the corrections are small, we can calculate the 
corresponding corrections in travel times by approximating the travel time function by a 
Taylor series and only using the first term. The residual can now be written: 
 

ri = (∂T/∂xi) * Δx + (∂T/∂yi) * Δy + (∂T/∂zi) * Δz + Δt   (13) 
 
In matrix form we can write this as 
 

r = G * X,         (14) 
 
where r is the residual vector, G the matrix of partial derivatives (with 1 in the last column 
corresponding to the source time correction term) and X is the unknown correction vector in 
location and origin time. 
 
This is a set of linear equations with 4 unknowns (corrections to hypocenter and origin time), 
and there is one equation for each observed phase time. Normally there would be many more 
equations than unknowns (e.g., 4 stations with 3 phases each would give 12 equations). The 
best solution to Eq. (13) or Eq. (14) is usually obtained with standard least squares techniques. 
The original trial solution is then corrected with the results of Eq. (13) or Eq. (14) and this 
new solution can then be used as trial solution for a next iteration. This iteration process can 
be continued until a predefined breakpoint is reached. Breakpoint conditions can be either a 
minimum residuum r, a last iteration gives smaller hypocentral parameter changes than a 
predefined limit, or just the total number of iterations. This inversion method was first 
invented and applied by Geiger (1910) and is called the Geiger method of earthquake 
location. The iterative process usually converges rapidly unless the data are badly configured 
or the initial guess is very far away from the mathematically best solution (see later). 
However, it also happens that the solution converges to a local minimum and this would be 
hard to detect in the output unless the residuals are very bad. A test with a grid search 
program could tell if the minimum is local or tests could be made with several start locations. 
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So far we have only dealt with observations in terms of arrival times. Many 3-component 
stations and arrays now routinely report backazimuth of arrival φ. It is then possible to locate 
events with only one station and P- and S-times (see Fig. 1). However, the depth must be 
fixed. If one or several backazimuth observations are available, they can be used together with 
the arrival time observations in the inversion and the additional equations for the backazimuth 
residual are 
 

ri
φ = (∂φ/∂xi) * Δx  + (∂φ/∂yi) * Δy     (15) 

 
Equations of this type are then added to the Eq. (13) or Eq. (14). The Δx and Δy in Eq. (15) 
are the same as for Eq. (13), however the residuals are now in degrees. In order to make an 
overall RMS, the degrees must be ‘converted to seconds’ in terms of scaling. For example, in 
the location program Hypocenter (Lienert and Havskov, 1995), a 10 deg backazimuth residual 
was optionally made equivalent to 1 s travel time residual. Using e.g., 20 deg as equivalent to 
1 s would lower the weight of the backazimuth observations. Schweitzer (2001) used in the 
location program HYPOSAT a different approach. In this program the measured (or assumed) 
observation errors of the input parameters are used to weight individually the different lines of 
the equation system (13) or (14) before inverting it. Thereby, more uncertain observations will 
contribute much less to the solution than well-constrained ones and all equations become non-
dimensional. 
 
Arrays (see Chapter 9) or single stations (see Eq. (3)) cannot only measure the backazimuth of 
a seismic phase but also its ray parameter (or apparent velocity). Consequently, the equation 
system (13) or (14) to be solved for locating an event, can also be extended by utilizing such 
observed ray parameters p (or apparent velocities) as defining data. In this case we have can 
write 
 

ri
p = (∂p/∂xi) * Δx + (∂p/∂yi) * Δy + (∂p/∂zi) * Δz    (16) 

 
Eq. (16) is independent from the source time and the partial derivatives are often very small. 
However, in some cases, in particular if an event is observed with only one seismic array, the 
observed ray parameter will give additional constrain for the event location. 
 
Eqs. (13) and (14) are written without discussing whether working with a flat Earth or a 
spherical Earth. However, the principle is exactly the same and using a flat-Earth 
transformation (e.g., Müller, 1977) any radially symmetric Earth model can be transformed in 
a flat model. The travel times and partial derivatives are often calculated by interpolating in 
tables and in principle it is possible to use any Earth model including 2D and 3D models to 
calculate theoretical travel times. In practice, 1D models are mostly used, since 2D and 3D 
models are normally not well enough known and the travel-time computations are much more 
time consuming. For local seismology, it is a common practice to specify a 1D crustal model 
and calculate arrival times for each ray while for global models; an interpolation in travel-
time tables such as IASPEI91 is the most common. However, as Kennett and Engdahl (1991) 
pointed out, the preferred and much more precise method for obtaining travel times from the 
IASP91 model or other 1D global Earth models (see Data Sheet DS 2.1) is to apply the tau-p 
method developed by Buland and Chapman (1983). To calculate own travel-time tables for 
local or global Earth models, the computer program LAUFZE can be downloaded from 
ftp://ftp.norsar.no/pub/outgoing/ johannes/lauf/. It allows calculating travel times for many 
different seismic phases and an arbitrary horizontally layered model with any combination of 
layers with constant velocities, gradients, or first-order discontinuities. 

ftp://ftp.norsar.no/pub/outgoing/johannes/lauf/
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3.2.3 Example of location in a homogeneous model 
 
The simplest case for earthquake location is a homogeneous medium. The travel times can be 
calculated as 
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where v is the velocity. The partial derivatives can be estimated from Eq. (17) and e.g., for x, 
the derivative is  
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Similar expressions can be made for y and z. Table 1 gives an example of locating an 
earthquake with 10 stations in a model with constant velocity (from Stein, 1991). The stations 
are from 11 to 50 km from the hypocenter. The earthquake has an origin time of 0 s at the 
point (0, 0, 10) km. The starting location is at (3, 4, 20) km at 2 s. The exact travel times were 
calculated using a velocity of 5 km/s and the iterations were done as indicated above. At the 
initial guess, the sum of the squared residuals were 92.4 s2, after the first iteration it was 
reduced to 0.6 s2 and already at the second iteration, the ‘correct’ solution was obtained. This 
is hardly surprising, since the data had no errors. We shall later see how this works in the 
presence of errors. 
 
 
Table 1 Inversion of error free data. Hypocenter is the correct location, Start is the start 
location, and the location is shown for the two following iterations. Units for x, y and z are 
[km], for t0 [s] and for the misfit e according to Eq. (11) [s2]. 
 

 Hypocenter Start 1. Iteration 2. Iteration 
X 0.0 3.0 -0.5 0.0 
Y 0.0 4.0 -0.6 0.0 
Z 10.0 20.0 10.1 10.0 
t0 0.0 2.0 0.2 0.0 
e  94.2 0.6 0.0 
RMS  3.1 0.25 0.0 

 
 
3.2.4 Advanced methods 
 
The problem of locating seismic events has recently experienced a lot of attention and new 
procedures have been developed such as the double-difference earthquake location algorithm 
(Waldhauser and Ellsworth, 2000), a novel global differential evolution algorithm (Ružek and 
Kvasnička (2001), a probabilistic approach to earthquake location in 3D and layered models 
by Lomax et al. (2000) as well as advanced grid search procedures to be applied in highly 
heterogeneous media (Lomax et al., 2001). Recent advances in travel-time calculations for 
three-dimensional structures complements this method (e.g., Thurber and Kissling, 2000). 
Several of these and more most recent developments are summarized in a monograph edited 
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by Thurber and Rabinowitz (2000), including also advances in global seismic event location 
(Thurber and Engdahl, 2000) and in a special volume about event location in context with the 
special requirements for monitoring the CTBT (Ringdal and Kennett, 2001). An example how 
much the accuracy of location within earthquake clusters can be improved by applying the 
above mentioned double-difference earthquake location algorithm is given in Figure 5. 
 

  
 
Figure 5  Examples of improving the ABCE locations for earthquake clusters (red dots) from 
regional networks of seismic stations (triangles) in China by relocating the events with the 
double-difference location algorithm (courtesy of Paul G. Richards). 
 
 
4 Location errors 
 
4.1 Error quantification and statistics 
 
Since earthquakes are located with arrival times that contain observational errors and the 
travel times are calculated assuming we know the model, all hypocenters will have errors. 
Contouring the grid search RMS (Figure 4) gives an indication of the uncertainty of the 
epicenter. Likewise it would be possible to make 3D contours to get an indication of the 3D 
uncertainty. The question is now how to quantify this measure. The RMS of the final solution 
is very often used as a criterion for ‘goodness of fit’. Although it can be an indication, RMS 
depends on the number of stations and does not in itself give any indication of errors and RMS 
is not reported by e.g., PDE and ISC. 
 
From Figure 4 it is seen that the contours of equal RMS are not circles. We can calculate 
contours within which there is a 67 % probability (or any other desired probability) of finding 
the epicenter (see below). We call this the error ellipse. This is the way hypocenter errors 
normally are represented. It is therefore not sufficient to give one number for the hypocenter 
error since it varies spatially. Standard catalogs from PDE and ISC give the errors in latitude, 
longitude and depth, however, that can also be very misleading unless the error ellipse has the 
minor and major axis NS or EW. In the example in Figure 4, this is not the case. Thus the 
only proper way to report error is to give the full specification of the error ellipsoid. 
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Before going into a slightly more formal discussion of errors, let us try to get a feeling what 
elements affect the shape and size of the epicentral error ellipse. If we have no arrival time 
errors, there are no epicenter errors so the magnitude of the error (size of error ellipse) must 
be related to the arrival time uncertainties. If we assume that all arrival time reading errors are 
equal, only the size and not the shape of the error ellipse can be affected. So what would we 
expect to give the shape of the error ellipse? Figure 4 is an example of an elongated network 
with the epicenter off to one side. It is clear that in the NE direction, there is a good control of 
the epicenter since S-P times control the distances in this direction due to the elongation of the 
network. In the NW direction, the control is poor because of the small aperture of the network 
in this direction. We would therefore expect an error ellipse with the major axis NW as 
observed. Another way of understanding why the error is larger in NW than in NE direction is 
to look at Eq. (12). The partial derivatives ∂T/∂x will be much smaller then ∂T/∂y so the Δy-
terms will have larger weight then the Δx-terms in the equations (strictly speaking the partial 
derivatives with respect to NW and NE). Consequently, errors in arrival times will affect Δx 
more than Δy. Note, that if backazimuth observations were available for any of the stations far 
North or South of the event, this would drastically reduce the error estimate in the EW 
direction since ∂φ/∂x is large while ∂φ/∂y is nearly zero. 
 
Another geometry of the stations would give another shape of the error ellipse. It is thus 
possible for any network to predict the shape and orientation of the error ellipses, and given 
an arrival error, also the size of the ellipse for any desired epicenter location. This could e.g., 
be used to predict how a change in network configuration would affect earthquake locations at 
a given site. 
 
In all these discussions, it has been assumed that the errors have Gaussian distribution and 
that there are no systematic errors like clock error. It is also assumed that there are no errors in 
the theoretical travel times, backazimuths, or ray parameter calculations due to unknown 
structures. This is of course not true in real life, however error calculations become too 
difficult if we do not assume a simple error distribution and that all stations have the same 
arrival time error. 
 
The previous discussion gave a qualitative description of the errors. We will now show how 
to calculate the actual hypocentral errors from the errors in the arrival times and the network 
configuration. The most common approach to earthquake location is based the least squares 
inversion and a Gaussian distribution of the arrival time errors in which case the statistics is 
well understood and we can use the Chi-Square probability density distribution to calculate 
errors. For a particular earthquake location, χ2 can be calculated as: 
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where σ is the assumed same standard deviation of any one of the residuals and n is the 
number of observations. We can now look in standard statistical tables (extract in Table 2) to 
find the expected value of χ2 within a given probability. As it can be seen from the table, 
within 5% probability, χ2 is approximately the number of degrees of freedom (ndf), which in 
our case is n-4. 
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Table 2  The percentage points of the χ2 distribution for different number of degrees of 
freedom (ndf)  

    
   ndf χ2 (95%) χ2 (50%) χ2 (5%) 
    5     1.1     4.4    11.1 
  10     3.9     9.3    18.3 
  20   10.9   19.3    31.4 
  50   34.8   49.3    67.5 
100   77.9   99.3  124.3 

  
 
If e.g., an event is located with 24 stations (ndf=20), there is only a 5% chance that χ2 will 
exceed 31.4. The value of χ2 will grow as we move away from the best fitting epicenter and in 
the example above, the contour within which χ2 is less than 31.4 will show the error ellipse 
within which there is 95 % chance of finding the epicenter. In practice, errors are mostly 
reported within 67 % probability. 
 
The errors in the hypocenter and origin time can also formally be defined with the variance – 
covariance matrix σX

2 of the hypocentral parameters. This matrix is defined as 
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The diagonal elements are variances of the location parameters x, y, z and t0 while the off 
diagonal elements give the coupling between the errors in the different hypocentral 
parameters. For more details, see e.g., Stein (1991). The nice property about σX

2 is that it is 
simple to calculate: 
 

σX
2 = σ2 * (GTG)-1,        (21) 

 

where σ2 is the variance of the arrival times multiplied with the identity matrix and GT is G 
transposed. The standard deviations of the hypocentral parameters are thus given by the 
square root of the diagonal elements and these are the usual errors reported. So how can we 
use the off diagonal elements? Since σX

2 is a symmetric matrix, a diagonal matrix in a 
coordinate system, which is rotated relatively to the reference system, can represent it. We 
now only have the errors in the hypocentral parameters, and the error ellipse simply have semi 
axes σxx, σyy, and σzz . The main interpretation of the off diagonal elements is thus that they 
define the orientation and shape of the error ellipse. A complete definition therefore requires 6 
elements. Eqs. (20) and (21) also show, as earlier stated intuitively, that the shape and 
orientation of the error ellipse only depends on the geometry of the network and the crustal 
structure while the standard deviation of the observations is a scaling factor. 
 
The critical variable in the error analysis is thus the arrival-time variances σ2. This value is 
usually larger than would be expected from timing and picking errors alone, however it might 
vary from case to case. Setting a fixed value for a given data set could result in unrealistic 
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error calculations. Most location programs will therefore estimate σ from the residuals of the 
best fitting hypocenter: 
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Division by ndf rather then by n compensates for the improvement in fit resulting from the use 
of the arrival times from the data. However, this only partly works and some programs allow 
setting an a priori value, which is only used if the number of observations is small. For small 
networks this can be a critical parameter. 
 
Recently, some studies (e.g., Di Giovambattista and Barba, 1997; Parolai et al., 2001) 
showed, both for regional and local seismic networks, that the error estimates ERH (in 
horizontal) and ERZ (in vertical direction), as given by routine location programs (e.g., in 
Hypoellipse) can not be considered as a conservative estimate of the true location error and 
might encourage investigators to unjustified tectonic conclusions (see also Figures 12 and 13).  
 
 
4.2 Example of error calculation 
 
We can use the previous error free example (Table 1) and add some errors (from Stein, 1991). 
We add Gaussian errors with a mean of zero and a standard deviation of 0.1 s to the arrival 
times. Now the data are inconsistent and cannot fit exactly. As it can be seen from the results 
in Table 3, the inversion now requires 3 iterations (2 before) before the locations do not 
change anymore. The final location is not exactly the location used to generate the arrival 
times and the deviation from the correct solution is 0.2, 0.4, and 2.2 km for x, y, and z 
respectively and 0.2 s for origin time. This gives an indication of the location errors. 
 
 
Table 3  Inversion of arrival times with a 0.1 s standard error. Hypocenter is the correct 
location, Start is the start location, and the locations are shown after the three following 
iterations. e is the misfit according to Eq. (11). 
 

 Hypocenter Start 1. Iteration 2. Iteration 3. Iteration 
x [km] 0.0 3.0 -0.2 0.2 0.2 
y [km] 0.0 4.0 -0.9 -0.4 -0.4 
z [km] 10.0 20.0 12.2 12.2 12.2 
t0 [s] 0.0 2.0 0.0 -0.2 -0.2 
e [s2]  93.7 0.33 0.04 0.04 
RMS [s]  3.1 0.25 0.06 0.06 

 
 
It is now interesting to compare to what is obtained with the formal error calculation. Table 4 
gives the variance – covariance matrix. Taking the square root of the diagonal elements we 
get a standard deviation of x, y, z and t0 of 0.3, 0.3 and 1.1 km and 0.1 s respectively. This is 
close to the ‘true’ error so the solution is quite acceptable. Also note that the RMS is close to 
the standard error. 
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Table 4  Variance – covariance matrix for the example in Table 3. 
   

    x     Y    Z    t 
x  0.06  0.01  0.01  0.00 
y  0.01  0.08 -0.13  0.01 
z  0.01 -0.13  1.16 -0.08 
t  0.00  0.01 -0.08  0.0 

 
The variance – covariance matrix shows some interesting features. As seen from the dialog 
elements of the variance – covariance matrix, the error is much larger in the depth estimate 
than in x and y. This clearly reflects that the depth is less well constrained than the epicenter 
which is quite common unless there are stations very close to the epicenter and thus |(d-Δ)| / Δ 
>> 1. We have for simplicity calculated the standard deviations from the diagonal terms, 
however since the off diagonal terms are not zero, the true errors are larger. In this example it 
can be shown that the semimajor and semiminor axis of the error ellipse have lengths of 0.29 
and 0.24 km respectively and the semimajor axis trends N22°E so the difference from the 
original diagonal terms is small. 
 
The zt term, the covariance between depth and origin time, is negative, indicating a negative 
trade-off between the focal depth and the origin time; an earlier source time can be 
compensated by a larger source depth and vice versa. This is commonly observed in practice 
and is more prone to happen if only first P-phase arrivals are used such that there is no strong 
limitation of the source depth by P-times in different distances. 
 
Error calculation is a fine art, there are endless variations on how it is done and different 
location programs will usually give different results. 
 
 
5 Relative location methods 
 
5.1 Master event technique 
 
The relative location between events within a certain region can often be made with a much 
greater accuracy than the absolute location of any of the events. This is the case when velocity 
variations outside the local region are the major cause of the travel-time residuals such that 
residuals measured at distant stations will be very similar for all of the local events. Usually, 
the events in the local area are relocated relative to one particularly well-located event, which 
is then called the master event. It should be clear that the Master Event Technique could only 
be used when the distance to the stations is much larger than the distance between the events. 
 
Most location programs can be used for a master event location. For this travel-time 
anomalies outside the source region are assumed to cause all individual station residuals after 
the location of the master event. By using these station residuals as station corrections, the 
location of the remaining events will be made relative to the master event since all relative 
changes in arrival times are now entirely due to changes in location within the source region. 
It is obvious that only stations and phases for which observations are available for the master 
event can be used for the remaining events. Ideally, the same stations and phases should be 
used for all events. 
 



 103

5.2 Joint hypocenter location 
 
In the Master Event Technique, it was assumed that true structure dependent residuals could 
be obtained absolutely correct from the master event, however other errors could be present in 
the readings for the master event. A better way is to determine the most precise station 
residuals using the whole data set. This is what Joint Hypocenter Determination (JHD) is 
about. Instead of determining one hypocenter and origin time, we will jointly determine m 
hypocenters and origin times, and n station corrections. This is done by adding the station 
residuals Δti

s to Eq. (13) and writing the equations for all m earthquakes (index j): 
 

rij = (∂T/∂xij) * Δx + (∂T/∂yij) * Δy + (∂T/∂zij) * Δx + Δti
s + Δtj.      (23) 

 
The first who proposed the JHD method was Douglas (1967). Since the matrix G of Eq. (14) 
is now much larger than the 4 x 4 matrix for a single event location, efficient inversion 
schemes must be used. If we use e.g., 20 stations with 2 phases each for 10 events, there will 
be 20 *10 *2 = 400 equations and 80 unknowns (10 hypocenters and origin times, and 20 
station residuals). 
 
The relative locations obtained by the Master Event Technique or the JHD are usually more 
reliable than individually estimated relative locations. However, only if we have the absolute 
location of one of the events (e.g., a known explosion), we will be able to convert the relative 
locations of a Master Event algorithm to absolute locations. While for JHD, “absolute” 
locations are obtained for all events if the assumed velocity model is correct. Accurate relative 
locations are useful to study e.g., the structure of a subduction zone or the geometry of an 
aftershocks area, which might indicate the orientation and geometry of the fault. Recently, 
Pujol (2000) gives a very detailed outline of the method and its application to data from local 
seismic networks. Figure 5 shows an example for increased location accuracy after applying 
JHD.  

   
 
Figure 6  Comparison of earthquake locations using the normal procedure at ISC (left) and 
JHD relocations (right). The events are located in the Kurile subduction zone along the 
rupture zones of large thrust events in 1963 and 1958. The vertical cross sections shown 
traverse the thrust zone from left to right. Note that the JHD solutions reduce the scatter and 
make it possible to define a dipping plane (from Schwartz et al., 1989). 
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6 Practical consideration in earthquake locations 
 
This section is intended to give some practical hints on earthquake location. The section does 
not refer to any particular location program, but most of the parameters discussed can be used 
with the Hypocenter program (Lienert and Havskov, 1995) or with HYPOSAT (Schweitzer, 
2001). 
 
 
6.1 Phases 
 
The most unambiguous phase to pick is usually P and P is the main phase used in most 
teleseismic locations. For local earthquakes, usually S-phases are also used. Using phases 
with different velocities and slowness has the effect of better constraining the distances and 
there is then less trade-off between depth and origin time or epicenter location and origin time 
if the epicenter is outside the network. The focal depth is best controlled (with no trade-off 
between depth and origin time) when phases are included in the location procedure which 
have different sign of the partial derivative ∂T/∂z in Eq. (13) such as for very locally observed 
direct up-going Pg (positive) and Pn (negative) (see section 6.3 Hypocentral depth and Figure 
9). In general, it is thus an advantage to use as many different phases as possible under the 
assumption that they are correctly identified. Recently Schöffel and Das (1999) gave a 
striking example (see Figure 7). But one very wrong phase can throw off an otherwise well 
constrained solution. This highlights the crucial importance of the capability of the 
observatory personal to recognize and report such phases already during their routine 
seismogram analysis. 
 

 
 
Figure 7  Examples of significant improvement of hypocenter location for teleseismic events 
by including secondary phases. Left: hypocenter locations using only P-phases; middle: by 
including S-phases; right: by including also depth phases and core reflections with different 
sign of ∂T/∂z (from Schöffel and Das, 1999). 
 
 
Engdahl et al (1998) used the entire ISC database to relocated more than 100.000 seismic 
events. They used not only a new scheme to associate properly secondary phases but they also 
systematically searched for pwP onsets in case of subduction-zone events to get better depth 
estimates and they used a modern global Earth model (AK135) to avoid the known problems 
with the Jeffreys-Bullen tables. With all these changes the authors reached a far more 
consistent distribution (in particular for subduction zones) and sharper picture of global 
seismicity. 
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The majority of location programs for local earthquakes only use first arrivals (e.g., HYPO71, 
Lee and Lahr, 1975). This is good enough for many cases. In some distance ranges, Pn is the 
first arrival, and it usually has a small amplitude. This means that the corresponding Sn phase, 
which is then automatically used by the program, might have also a very small amplitude and 
is not recognized while actually the phase read is Sg or Lg instead. Since the program 
automatically assumes a first arrival, a wrong travel time curve is used for the observed phase, 
resulting in a systematic location error. This error is amplified by the fact that the S-phase, 
due to its low velocity, has a larger influence on the location than the P-phase. It is therefore 
important to use location programs where all crustal phases can be specified. 
 
Schweitzer (2001) developed an enhanced routine to locate both local/regional and 
teleseismic events, called HYPOSAT. The program runs with global Earth models and user 
defined horizontally layered local or regional models. It provides best possible hypocenter 
estimates of seismic sources by using besides the usual input parameters such as arrival times 
of first and later onsets (complemented by backazimuth and ray parameters in case of array 
data or polarization analyses) also travel-time differences between the various observed 
phases. If S observations are also available, preliminary origin times are estimated by using 
the Wadati approach (see Figure 3) and a starting epicenter with a priori uncertainties by 
calculating the intersection of all backazimuth observations. Relocating events with real data 
Schweitzer could show that HYPOSAT solutions have the smallest errors when besides the 
absolute onset times also the travel-time differences of all available primary and secondary 
phase readings are taken into account. The most advanced version of HYPOSAT can be found 
at ftp://ftp.norsar.no/pub/outgoing/johannes/hyposat/ and a program description is annexed in 
PD 11.1.  
 
 
6.2 Starting location 
 
Iterative location programs commonly start at a point near the station recording the first 
arrival. This is good enough for most cases, particularly when the station coverage is good 
and the epicenter is near or within the network. However, this can also lead to problems when 
using least squares techniques, which converge slowly or sometimes not at all for events 
outside the limits of a regional network (Buland, 1976). Another possibility is that the 
solution converges to a local minimum, which might be far from the correct solution. For 
small-elongated networks, two potential solutions may exist at equal distance from the long 
axis. A starting location close to the first arrival station can then bias the final solution to the 
corresponding side of such a network. Although this bias usually is on the correct side, any 
systematic error in the first-arrival station’s time can have a disproportionately large effect on 
the final location. Thus in many cases, it is desirable to use a better start location than the 
nearest station. There are several possibilities: 
 

a) In many cases the analyst knows by experience the approximate location and can then 
manually give a start location. Most programs have this option. 

b) Similar phases at different stations can be used to determine the apparent velocity and 
backazimuth of a plane wave using linear regression on the arrival times with respect 
to the horizontal station coordinates. With the apparent velocity and/or S-P times, an 
estimate of the start location can be made. This method is particularly useful when 
locating events far away from the network (regionally or globally). 

ftp://ftp.norsar.no/pub/outgoing/johannes/hyposat/
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c) Backazimuth information is frequently available from 3-component stations or seismic 
arrays and can be used as under b. 

d) If backazimuth observations are available from different stations, a starting epicenter 
can be determined by calculating the intersection of all backazimuth observations. 

e) S-P and the circle method can be used with pairs of stations to get an initial location. 
f) The Wadati approach can be used to determine a starting source time. 

 
The starting depth is usually a fixed parameter and set to the most likely depth for the region. 
For local earthquakes usually the depth range 10-20 km is used, while for distant events, the 
starting depth is often set to 33 km. If depth phases like e.g., pP are available for distant 
events, these phases can be used to set or fix the depth (see next section). 
 
 
6.3 Hypocentral depth 
 
The hypocentral depth is the most difficult parameter to determine due to the fact that the 
travel-time derivative with respect to depth changes very slowly as function of depth (see 
Figure 8) unless the station is very close to the epicenter. In other words, the depth can be 
moved up and down without changing much the travel time. Figure 8 shows a shallow (ray 1) 
and a deeper event (ray 2). It is clear that the travel-time derivative with respect to depth is 
nearly zero for ray 1 and but not for ray 2. In this example, it would thus be possible to get an 
accurate depth estimate for the deeper event but not for the shallower one. Unfortunately, at 
larger distances from the source, most rays are more like ray 1 than like ray 2 and locations 
are therefore often made with a fixed ‘normal’ start depth. Only after a reliable epicenter is 
obtained the program will try to iterate for the depth. Another possibility is to locate the event 
with several starting depths and then using the depth that gives the best fit to the data. 
Although one depth will give a best fit to all data, the depth estimate might still be very 
uncertain and the error estimate must be checked.  

 

            
 

Figure 8  The depth – distance trade off in the determination of focal depth. 
 
 
For teleseismic events, the best way to improve the depth determination is to include readings 
from the so-called depth phases (e.g., Gutenberg and Richter, 1936 and 1937; Engdahl et al., 
1998) such as pP, pwP (reflection from the ocean free surface), sP, sS or similar but also 
reflections from the Earth´s core like PcP, ScP or ScS (see Figure 7). The travel-time 
differences (i.e., depth phase – direct phase) as pP-P, sP-P, sS-S, and pS-S are quite constant 
over large range of epicentral distances for a given depth so that the depth can be determined 
nearly independently of the epicenter distance. Another way of getting a reliable depth 
estimate for teleseismic locations is to have both near and far stations available. In particular, 
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event observations from local and regional stations and with PKP observations had been used 
together for this purpose. However, this is unfortunately for many source regions not possible. 
 
For local events, a rule of thumb is that at least several near stations should be not further 
away than 2 times the depth in order to get a reliable estimate (Figure 8). This is very often 
not possible, particularly for regional events. At distance larger than 2 × depth, the depth 
depending partial derivative changes very little with depth if the first arriving phase is the 
more or less horizontally propagating Pg. But at distances where the critically refracted (so-
called head-waves) Pb or Pn arrive, there is again some sensitivity to depth due to the steeply 
down going rays of Pb or Pn (Figure 9) and because of the different sign of the partial 
derivatives of their travel times with depth, which is negative, as compared to Pg, which is 
positive. So, if stations are available at distances with both direct and refracted rays as first 
arrivals, reasonably reliable solutions might be obtained. An even better solution is when both 
Pg and Pn are available at the same station and the location capability could be similar to 
using P and pP for teleseismic events. The problem is that it might be difficult to identify 
correctly secondary P-phases and a wrong identification might make matters worse. 
 

       
  

Figure 9  Example of both Pg and Pn rays in the a single layer crustal model.  
 
 
The depth estimate using a layered crustal model remains problematic even with a mix of 
phases. Checking catalogs with local earthquakes, it will often be noted that there is a 
clustering of hypocenters at layer boundaries. This is caused by the discontinuities in the 
travel-time curves of the direct phase Pg as a function of depth at layer boundaries; see Figure 
8 for an example. The Pg travel time suddenly decreases when the hypocenter crosses a 
boundary (here Moho) since a larger part of the ray suddenly is in a higher velocity layer, 
while the Pn travel time continuously decreases as the depth increases as long as the event is 
still within the crust. This gives rise to the discontinuities in the Pg-Pn travel-time curve. So 
one Pn-Pg travel-time difference is not enough to ensure a reliable depth estimate, several 
such phase arrivals must be available. 
 

        
 
Figure 10  Ray paths of Pg and Pn phases in a two-layer crustal model (left). On the right side 
the travel-time curve of Pg-Pn as a function of depth is sketched.  



 108

Even when several Pg and Pn phases are available, depth estimates still remains a problems at 
regional distances due to the uncertainty in the crustal models. Since the depth estimates are 
critically dependent on the accurate calculation of Pg and Pn travel times, small uncertainties 
in the model can quickly throw off the depth estimate. 
 
Many location programs give the RMS of the travel-time residuals in a grid around the 
calculated hypocenter. This, in addition to the error estimates, gives an idea about the 
accuracy and a local minimum might be found in this way. A more direct way of estimating 
the quality of the depth estimate is to calculate the RMS as a function of depth in order to 
check if a local minimum has been reached. This is particularly relevant for crustal 
earthquakes at shallow depth and can also be used as a complementary tool for better 
discriminating between quarry blasts and earthquakes.  
 
 
6.4 Outliers and weighting schemes 
 
The largest residuals have disproportionally large influence on the fit of the arrival times due 
to the commonly used least squares fit. Most location programs will have some kind of 
residual weighting scheme in which observations with large residuals are given lower or even 
no weight. Bisquare weighting is often used for teleseismic events (Anderson, 1982). The 
residual weighting works very well if the residuals are not extreme since the residual 
weighting can only be used after a few iterations so that the residuals are close to the final 
ones. Individual large residuals can often lead to completely wrong solutions, even when 90 
% of the data are good, residual weighting will not help in these cases. Some programs will 
try to scan the data for gross errors (like minute errors) before starting the iterative procedure. 
If an event has large residuals, try to look for obvious outliers. A Wadati diagram can often 
help in spotting bad readings for local earthquakes (see Figure 3). 
 
The arrival-time observations will by default always have different weights in the inversion. 
A simple case is that S-waves may have larger weights than P-waves due to their lower 
velocities. An extreme case is the T-wave (a guided waves in the ocean), which with its low 
velocity (1.5 km/s) can completely dominate the solution. Considering, that the accuracy of 
the picks is probably best for the P-waves, therefore it should be natural, that P-arrivals should 
have more importance than S-arrivals in the location. However, the default parameter setting 
in most location programs is to leave the original weights unless the user actively changes 
them. It is normally possible to give ‘a priori’ for all S-phases a lower weight and in addition, 
all phases can be given individual weights, including being totally weighted out. 
 
When working with local earthquakes, the nearest stations will usually provide the most 
accurate information due to the clarity of the phases. In addition, uncertainty in the local 
model has less influence on the results at short distances than at larger distances; this is 
particularly true for the depth estimate. It is therefore desirable to put more weight on data 
from near stations than on those from distant stations and this is usually done by using a 
distance weighting function of 
 

nearfar
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where Δ is the epicentral distance, xnear is the distance to which full weight is used and xfar is 
the distance where the weight is set to zero (or reduced). The constants xnear and xfar are 
adjusted to fit the size of the network; xnear should be about the diameter of the network, and 
xfar about twice xnear. For a dense network, xnear and xfar might be made even smaller to more 
accurate solutions.  
 
 
6.5 Ellipticity of the Earth 
 
Until now we only assumed that the model used for calculating distances or travel times is 
either for local or regional events a flat model or for teleseismic events a standard spherical 
model of the Earth. However, the Earth is neither a sphere nor a flat disk but an ellipsoid 
symmetrical to its rotation axis. It was Gutenberg and Richter (1933) who first pointed out 
that the difference between a sphere and an ellipsoid must be taken in account when 
calculating epicentral distances and consequently also the travel times of seismic phases. 
Therefore, they proposed the usage of geocentric coordinates instead of geographic 
coordinates to calculate distances and angles on the Earth. Because of the axially symmetrical 
figure of the Earth, the geocentric longitude is identical to the geographic longitude. To 
convert a geographic latitude latg into a geocentric latitude latc one can use the following 
formula: 
 

)tan)136.6378/)751.6356136.6378(1arctan(( 2
gc latlat ∗−−= .  (25) 

 
With this formula all station latitudes have to be converted before an event location and after 
the inversion, the resulting geocentric event latitude has to be converted back by applying the 
inverse equation 
 

))136.6378/)751.6356136.6378(1/(arctan(tan 2−−= cg latlat .  (26) 
 
With this procedure all angle calculations related to an event location are done for a sphere. 
The calculated distances are measured in degrees and to convert them in km, one has to use 
the local Earth radius Rloc: 
 

22 )sin751.6356()cos136.6378( ccloc latlatR ∗+∗= .   (27) 
 
This value has then to be applied for converting a distance D measured in degrees into a 
distance measured in km, or vice versa: 
 

[ ] [ ]deg360
2 DkmD locR ∗= ∗π  or [ ] [ ]kmDD

locR ∗= ∗π2
360deg   (28) 

 
All standard Earth models are spherically symmetrical Earth with a mean radius of 6371 km. 
Therefore the standard tables also contain travel times calculated for a sphere. Bullen (1937, 
1938, 1939) was the first, who calculated latitude depending travel-time corrections 
(ellipticity corrections) to be used together with travel-time tables for a spherical Earth. Later 
work on this topic was done by Dziewonski and Gilbert (1976) and Dornboos (1988). Kennett 
and Gudmundsson (1996) published the most recent set of ellipticity corrections for a large 
number of seismic phases. 
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In conclusion: to get the theoretical travel time for an event in teleseismic or regional 
distance, one has to calculate the geocentric epicentral distance, then one has to use travel-
time tables as calculated for a spherical Earth model, and finally one has to apply the latitude 
(event and station!) depending ellipticity correction. Most location routines do automatically 
apply the described methods and formulas but it is important to check this in detail and 
eventually to change a location program. 
 
 
6.6 Importance of the model 
 
In this context the importance of the model assumptions underlying the location procedure 
have to be emphasized. Many studies showed (e.g., Kissling, 1988) that accuracy of locating 
hypocenters can be improved by using a well-constrained minimum 1D velocity model with 
station corrections is better than using a regional 1D model. However, Spallarossa et al. 
(2001) recently showed, that in strongly heterogeneous local areas even a 1D model with 
station corrections does not significantly improve the accuracy of the location parameters. 
High-precision location can in such case be achieved only be using a 3D model. This is 
particularly true for locating earthquakes in volcanic areas (see Lomax et al., 2001). 
 
Smith and Ekström (1996) investigated the improvement of teleseismic event locations by 
using a recent three-dimensional Earth models. They came to the conclusion that it “... offers 
improvement in event locations over all three 1D models with, or without, station 
corrections.” For the explosion events, the average mislocation distance is reduced by 
approximately 40 %; for the earthquakes, the improvements are smaller. Corrections for 
crustal thickness beneath source and receiver are found to be of similar magnitude to the 
mantle corrections, but use of station corrections together with the 3D mantle model provide 
the best locations. Also Chen and Willemann (2001) carried out a global test of seismic event 
locations using three-dimensional Earth models. Although achieved by using a 3D model a 
more tightly clustering of earthquakes in subduction zones than by using depth from the ISC 
Bulletin based on 1D model calculations, they concluded that the clustering was not as tightly 
as for depths computed by Engdahl at al. (1998) who used depth phases as well as direct 
phases. Thus, even using the best available global 3D models can not compensate for the non-
use of depth phases and core reflections in teleseismic hypocenter location (see Figure 7). 
 
A case example for improved location of local events is given in Figures 11 and 12. The 
upper panel in Figure 11 shows the initial locations for aftershocks of the Cariaco earthquake 
(Ms = 6.8) on July 9, 1997 in NE of Venezuela based an averaged 1D crustal velocity model. 
The mean location error (i.e., the calculated precision with respect to the assumed model) was 
about 900 m. On the average, the aftershocks occurred about 2 to 3 km north of the surface 
fault trace. A detailed tomographic study revealed lateral velocity contrasts of up to 20 % with 
higher velocities towards the north of the El Pilar fault. Relocating the events with the 3D 
velocity model the epicenters were systematically shifted southward by about 2 km and now 
align in their majority rather well with fault traces mapped before the earthquake as well as 
with newly ruptured fault traces. Also in the cross sections the data scatter was clearly 
reduced so that closely spaced outcropping surface faults could be traced down to a depth of 
more than 10 km. This results hints to the fact that in the presence of lateral velocity 
inhomogeneities epicenter locations are systematically displaced in the direction of higher 
velocities. We will look into this problem more closely in section 7. 
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Figure 11  Epicentral distribution of aftershocks of the Cariaco earthquake (Ms=6.8) on July 
9, 1997 in NE of Venezuela. Top: results from HYPO71 based on a one-dimensional velocity-
depth distribution. Bottom: Relocation of the aftershocks on the basis of a three-dimensional 
model derived from a tomographic study of the aftershock region (courtesy of M. Baumbach, 
H. Grosser and A. Rietbrock). 
 

 
 

Figure 12  3-D distribution of the P-wave velocity in the focal region of the 1997 Cariaco 
earthquake as derived from a tomographic study. The horizontal section shows the velocity 
distribution in the layer between 2 km and 4 km depth. Red and blue dots mark the epicenters 
of the aftershocks. The red ones were chosen because of their suitability for the tomograpy. 
The six vertical cross sections show the depths distribution of the aftershocks (green dots) 
together with the deviations of the P-wave velocity from the average reference model. The 
depth range and the lateral changes of fault dip are obvious (courtesy of M. Baumbach, H. 
Grosser and A. Rietbrock). 
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7 Internal and external (real) accuracy of locations 
 
For decades the international data centers have located earthquakes world-wide by means of 
the 1D Jeffreys and Bullen (1940, 1948, 1958, 1967, and 1970) travel-time tables without 
external control of the accuracy of such solutions by checking them independent and similarly 
strong events of exactly known position and origin time. Therefore, the question remained 
open for a long time whether these calculated location errors were real or just the minimized 
average errors for the best fitting solutions to the observed data based on the various model 
assumptions made with respect to the validity of the velocity model, the non-correlation of the 
various parameters to be determined and the Gaussian distribution of the model and data 
reading errors involved. If the latter was the case then the calculated errors were not measure 
of the real accuracy of the calculated location and origin time but rather a measure of the 
internal precision of fitting the data to the model assumptions. 
 
In order to investigate this in more detail, Bormann (1972) looked into the travel-time errors 
reported by the international data centers for the German seismological observatory Moxa 
(MOX) for earthquakes in different regions of the world. As and example, he got for the same 
data set of events from the Kurile Islands the mean residual⎯δtp = + 0.16 s and a standard 
deviation σ = ± 0.65 s when referring the MOX onset-time readings to the locations published 
by the U.S. Coastal and Geodetic Survey (USCGS, World Data Center A, WDC A) and ⎯δtp = 
+ 0.35 s with σ = ± 1.1 s when referred to the locations published by the Academy of Sciences 
of the Soviet Union (ANUSSR, World Data Center B, WDC B) which used the same J-B 
travel-time model as USCGS. Thus, the travel-time (or onset-time reading) errors calculated 
by the data centers for seismic stations are not real errors of these stations or their readings but 
depend on the number and distribution of stations used by these centers in their location 
procedure. And these were rather different for WDC A and WDC B. While the USCGS used 
the data of a worldwide station network ANUSSR based its locations on the station network 
of the former Soviet Union and East European countries and these “looked at” events outside 
of Eurasia from a much narrower azimuth and distance range. But this is just equivalent to the 
above discussion related to Figure 4. The mean residuals calculated by these two centers for 
the considered region were not significantly different and not far from zero. Therefore, the 
question remained whether there were systematic biases in these solutions and if so, of what 
kind and how big they were. 
 
From the 60's onwards testing of strong underground nuclear explosions (UNE) provided for 
the first time independent strong sources with precisely known coordinates and origin time 
which allowed to check the accuracy of calculated seismic source locations from global 
seismic observations. During the last years for many UNEs such information was released. 
However, for the LONGSHOT explosion on the Amchitka Islands, Aleutians, the source 
parameters were known since many years. For this event the residual of MOX was δtp = -4.6 
s! This contrasted strongly with calculated residuals for Aleutian earthquakes. From 53 
analyzed earthquakes in that region, no negative residual at MOX was larger than -0.8 s! 
Interestingly, the USGS had calculated for LONGSHOT a location 25 km NW of the true 
place (which explains -1 s travel-time error at MOX) and an origin time which was 3.5 s 
earlier then the real one (which accounts for the remaining -3.5 s!) (Sykes, 1966). The too 
early source time is a meanwhile well-understood artifact of the Jeffreys-Bullen tables, which 
generally give too long P-phase travel times. According to Fedotov and Slavina (1968) 
epicenters calculated by the WDC B from events in the Aleutians are generally displaced 
towards NW with respect to those of the WDC A. Consequently, with the same systematic 
tendency of shift, they deviated still more from the true locations of events in that area. 
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To get the best geographic coverage for each seismic event, the ISC waits with its event 
location about two years to collects as much as possible seismogram readings from all 
worldwide distributed seismological observatories. 
 
What is the reason for this systematic mislocation, which usually remains unrecognized unless 
one locates strong independently controlled sources of exactly known source parameters and 
origin time? Figure 13 shows some hypothetical earthquakes at different depth on a vertically 
dipping fault. It separates two half-spaces with different wave propagation velocity v2 > v1. 
This is a realistic model for parts of the San Andreas Fault. The lateral velocity difference 
across the fault may be as large as 5 to 7 %. S1 and S2 may be two stations at the same 
hypocentral distances from the events. But because of v2 > v1 the onset time t2 at S2 is earlier 
(travel-time shorter) than for t1 at S1. Running now the location procedure with the common 
residual minimization on the assumption of a laterally homogeneous velocity model will 
result in hypocentral distances d2(h) < d1(h). Since the difference increases with depth, the 
hypocenters are not only offset from the real fault but seem to mark even a slightly inclined 
fault, which is not the case. 
 

                     
 
Figure 13  Illustration of the systematic mislocation of earthquakes along a fault with strong 
lateral velocity contrast. vo is the assumed model velocity with v2 > vo > v1. 
 
 
From this hypothetical example we learn that localizations based on 1D velocity models in the 
presence of 2D or 3D velocity inhomogeneities will be systematically shifted in the direction 
of increasing velocities (or velocity gradients), the more so the less the station distribution 
controls the event from all azimuths. Precisely this was the cause for the larger systematic 
mislocation of WDC B as compared to WDC A. While the latter localizes events using data 
from a global network, the former used solely data from the former Soviet and East European 
territory, i.e., stations which view the Aleutian Islands only from a narrow azimuth range. The 
direction of systematic mislocation of both centers to the NW agrees with the NW directed 
subduction of the Pacific plate underneath the Aleutians. According to Jacob (1972) this cold 
lithospheric plate has 7 to 10% higher P-wave velocities than the surrounding mantle. A 
recent study by Lienert (1997) addresses also this problem of assessing the reliability of 
earthquake locations by using known nuclear tests. 
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3.4 Determination of fault-plane solutions 
 

3.4.1 Introduction 
 
The direction (polarity) and amplitude of motion of a seismic wave arriving at a distant station 
depends both on the wave type considered and the position of the station relative to the 
motion in the earthquake source. This is illustrated by Figs. 3.21a and b. 
 
Fig. 3.21a represents a linear displacement of a point source S while Fig. 9b depicts a right 
lateral (dextral) shear dislocation along a fault plane F. Shear dislocations are the most 
common model to explain earthquake fault ruptures. Note that in the discussion below we 
consider the source to be a point source with dimension much smaller than the distance to the 
stations and the wave length considered. First we look into the situation depicted in Fig. 
3.21a. When S moves towards Δ1 then this station will observe a compressional (+) P-wave 
arrival (i.e., the first motion is away from S), Δ4 will record a P-wave of opposite sign (-) , a 
dilatation (i.e., first motion towards S), and station Δ2 will receive no P-wave at all. On the 
other hand, S-waves, which are polarized parallel to the displacement of S and perpendicular 
to the direction of wave propagation, will be recorded at Δ2 but not at Δ1 and Δ4 while station 
Δ3 will receive both P- and S-waves. 
 

 
Fig. 3.21  Direction of source displacement with respect to seismic stations Δi for a) a single 
force at point S and b) a fault rupture F. Note that in the discussion below we consider the 
source to be a point source with an rupture dimension much smaller than the distance to the 
stations. 
 
 
Somewhat different is the case of a fault rupture (Fig. 3.21b). At stations Δ1 and Δ5, which 
are positioned in the strike direction of the fault, the opposite signs of P motion on both side 
of the fault will cancel, i.e., no P-waves will be observed. The latter also applies for station Δ3 
which is sited perpendicular to the fault. On the other hand, stations Δ2 and Δ4, which are 
positioned at an angle of 45° with respect to the fault, will record the P-wave motions with 
maximum amplitudes but opposite sign. This becomes clear also from Fig. 3.23a. It shows the 
different polarities and the amplitude "lobes" in the four quadrants. The length of the 
displacement arrows is proportional to the P-wave amplitudes observed in different directions 
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from the fault. Accordingly, by observing the sense of first motions of P-waves at many 
stations at different azimuths with respect to the source it will be possible to deduce a "fault-
plane solution". But because of the symmetry of the first-motion patterns, two potential 
rupture planes, perpendicular to each other, can be constructed. Thus, on the basis of polarity 
data alone, an ambiguity will remain as to which one was the acting fault plane. This can only 
be decided by taking into account additional data on azimuthal amplitude and frequency or 
wave-form patterns, which are controlled by the Doppler effect of the moving source, and/or 
field data on the orientation and nature of seismotectonic faults. 
 
In accordance with the above, the amplitude distribution of P waves for a point source with 
pure double-couple shear mechanism is described in a spherical co-ordinate system (θ, φ) 
(Aki an Richards, 1980; see Fig. 3.22) by 
 
    AP (θ, φ) = cos φ sin 2θ.               (3.67) 
 
This expression divides the focal sphere into 4 quadrants. The focal sphere for a seismic point 
source is a conceived sphere of arbitrarily small radius centered on the source. Within each 
quadrant the sign of the P-wave first motion (polarity) does not change but amplitudes are 
large in the center of the quadrant and small (or zero) near to (or at) the fault plane and the 
auxiliary plane. The nodal lines for P-waves, on which AP (θ, φ) = cos φ sin 2θ = 0, separate  
 
the quadrants. They coincide with the horizontal projection of the two orthogonal fault planes 
traces through the focal sphere. Opposite quadrants have the same polarity, neighboring 
quadrants different polarities. Note that compression is observed at stations falling in the 
tension quadrant (force directed away from the point source) while dilatation is observed at 
stations falling in the compression quadrant (force directed towards the point source). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.22  Map view of P-wave radiation pattern for a shear fault. θ is the azimuth in the plane 
while φ is in fact three-dimensional. See also Fig. 3.23.Black areas: polarity +, white areas - . 
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The position of the quadrants on the focal sphere depends on the orientation of the active fault 
and of the slip direction in space. This is illustrated by Fig. 3.23. which shows the P-wave 
radiation pattern for a thrust event with some strike-slip component. Thus, the estimation of 
the P-wave first motion polarities and their back-projection onto the focal sphere allows us to 
identify the type of focal mechanism of a shear event (fault-plane solution). The only problem 
is, that the hypocenter and the seismic ray path from the source to the individual stations must 
be known. This may be difficult for a heterogeneous model with 2D or 3D-velocity structure. 
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Fig. 3.23  Radiation pattern of the radial displacement component (P-wave) due to a double-
couple source: a) for a plane of constant azimuth (with lobe amplitudes proportional to sin2θ) 
and b) over a sphere centered on the origin. Plus and minus signs of various sizes denote 
amplitude variation (with θ and φ) of outward and inward directed motions. The fault plane 
and auxiliary plane are nodal lines on which cosφ sin2θ = 0. The pair of arrows in a) at the 
center denotes the shear dislocation. Note the alternating quadrants of inward and outward 
directions. (Modified from Aki and Richards 1980 ; with kind permission of the authors). 
 
 
 
Fault-plane solutions based on P-wave first motion polarities will be better constrained if 
additionally the different radiation pattern of S-waves displacement amplitudes is taken into 
account. An example is given in Fig. 3.24 for the same fault-plane solution as shown in Fig. 
3.23 for P-waves. 
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Fig. 3.24  Radiation pattern of the transverse displacement component (S-wave) due to a 
double-couple source. a) in the plane ⎨φ = 0, φ = π⎬ and b) over a sphere centered on the 
origin. Arrows imposed on each lobe in a) show the direction of particle displacement 
associated with the lobe while the arrows with varying size and direction in the spherical 
surface in b) indicate the variation of the transverse motions with θ and φ. There are no nodal 
lines as in Fig. 3.23 but only nodal points where there is zero motion. Note that the nodal 
point for transverse motion at (θ, φ) = (45°, 0°) at T is a maximum in the pattern for 
longitudinal motion (see Fig.3.23) while the maximum transverse motion (e.g., at θ = 0) 
occurs on a nodal line for the longitudinal motion. The pair of arrows in a) at the center 
denotes the shear dislocation. (Modified from Aki and Richards 1980; with kind permission 
of the authors). 
 
 
In the case of a double-couple mechanism, according to Fig. 3.22, the S-wave amplitude 
pattern follows the relationship (see Aki and Richards, 1980) 
 
    AS = cos2θ cosφθ - cosθ sinφφ              (3.68) 
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with θ and φ - unit vectors in θ and φ direction, AS - shear-wave displacement vector. 
 
 
3.4.2 Manual determination of fault-plane solutions 

 
Manual fault-plane solutions are normally based on P-wave polarity readings only which are 
plotted on two kinds of projections, either the equal-angle Wulff net or the Lambert-Schmidt 
equal area projection (Figs. 3.25a and b; see also Aki and Richards, 1980, Vol. 1, p. 109-110). 
The latter provides a less cluttered plot of data with take-off angles less than 45° but in 
principle the procedure of constructing the fault planes is the same (see WS 3.2 and WS 3.3).  

Fig. 3.25a  The equal angle Wulff net. 
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Fig. 3.25b  The equal area Lambert-Schmidt net. 
 

 
To obtain a fault-plane solution basically three steps are required: 
 
(1) Calculating the positions of the penetration points of the seismic rays through the focal 

sphere which are defined by the ray azimuth AZM and the take-off angle AIN of the ray 
from the source.  

(2) Marking these penetration points through the upper or lower hemisphere in a horizontal 
projection of that sphere using different symbols for compressional and dilatational first 
arrivals. Usually, lower hemisphere projections are used. Rays which have left the upper 
hemisphere have to be transformed into their equivalent lower hemisphere ray. This is 
possible because of spherical symmetry of the radiation pattern (see Figs. 3.26 and 3.27). 

(3) Partitioning the projection of the lower focal sphere by two perpendicular great circles 
which separate all (or at least most) of the + and - arrivals in different quadrants. 
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Fig. 3.26  Transformation of a ray leaving the focal sphere upwards into an equivalent 
downward ray with same polarity and changed incidence angle and azimuth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.27  (below): Two rays, leaving the focal sphere in opposite directions, reach - because 
of the symmetry of radiation pattern - the stations 1 and 2 with the same polarity. The 
crossing point of the up-going ray with the focal sphere can, therefore, be remapped according 
to the formulae given in Fig. 3.26 into a crossing point with the lower hemisphere which 
coincides with the ray crossing-point for station 2. 
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Fig. 3.28 shows the angles which describe the orientation and motion of a fault plane and Fig. 
3.29 shows their determination in the net projections. The strike angle φ is measured 
clockwise against North ( 0° ≤ φ ≤ 360° ). To resolve the 180° ambiguity, it is assumed that 
when looking into the strike direction the fault dips to the right hand side (i.e., its fault-trace 
projection is towards the right of the net center). The dip angle δ describes the inclination of 
the hanging wall against the horizontal ( 0° ≤ δ ≤ 90° ). The rake angle λ describes the 
displacement of the hanging wall relative to the foot wall ( -180° ≤ λ ≤ 180° ). λ = 0 
corresponds to slip in strike direction, λ > 0 means upward motion of the hanging wall (i.e., 
reverse or thrust faulting component) and λ < 0 downward motion (i.e., normal faulting 
component). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.28  Angles describing the orientation and motion of faults (see text). 

Hanging wall 
Foot wall 

0°

N 

Strike φ 
Direction of motion of 

the hanging wall 

+180°
-180° 

0°

Dip δ 

Rake 

0°



 126

In Fig. 3.29 P1, P2 and P3 mark the positions of the poles of the planes FP1 (fault plane), FP2 
(auxiliary plane) and EP (equatorial plane) in their net projections. From Fig. 3.28 it is 
obvious that all three planes are perpendicular to each other (i.e., 90o apart) and intersect in 
the poles of the respective third plane, i.e., FP1 and FP2 in P3, FP1 and EP in P2 etc. Note 
that on the basis of polarity readings alone it can not be decided whether FP1 or FP2 was the 
active fault. Discrimination from seismological data alone is still possible by requires 
additional study of the directivity effects such as azimuthal variation of frequency (Doppler 
effect), amplitudes and/or waveforms. For sufficiently large shocks these effects can more 
easily be studied in low-frequency teleseismic recordings while in the local distance range 
high-frequency waveforms and amplitudes may be strongly influenced by resonance effects 
due to low-velocity near-surface layers. Seismotectonic considerations or field evidence from 
surface rupture in case of strong shallow earthquakes may allow us to resolve this ambiguity, 
too. Figs. 3.30 and 3.31 depict several basic types of earthquake faulting and their related 
fault-plane solutions in so-called "beach-ball" presentations of the net projections.  
 

    
 
Fig. 3.29  Determination of the fault plane parameters φ, δ and λ in the net diagrams. The 
polarity distribution, slip direction and projection of FP1 shown qualitatively correspond to 
the faulting case depicted in Fig. 3.28. For abbreviations used see text. Note: λ* = 180° - λ 
when the center of the net lies in the tension (+) quadrant (i.e., event with thrust component) 
or λ* = -λ when the center of the net lies in the pressure quadrant (i.e., event with normal 
faulting component. 
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Fig. 3.30  Basic types of earthquake faulting for some selected dip and rake angles. Note that  
mixed types of faulting occur when λ ≠ 0, 180o or ± 90o., e.g., normal faulting with strike-slip 
component or strike-slip with thrust component. Also, dip angles may vary between 0o < δ ≤ 
90o. For fault plane traces and polarity distributions of these faulting types in their "beach-ball 
presentation" see Fig. 3.31. 
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Fig. 3.31  Beach-ball presentation of the net projections of the fault plane cut-traces and of the 
penetration points of the T-and P-axes through the lower focal hemisphere for different 
faulting mechanisms. White sectors correspond to negative and black sectors to positive first-
motion polarities. 
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3.4.3 Accuracy of fault-plane solutions 
 
Fault planes determined by eye-fit to the polarity data may be uncertain by about ± 10o. This 
is acceptable. Even computer assisted best fits to the data will produce different acceptable 
solutions within about the same error range with only slightly different standard deviations 
(see, e.g., Fig. 1 in WS 3.3, NEIC and HRVD solutions, respectively).  
 
In addition, one has to be aware that different fitting algorithm or error-minimization 
procedures may produce different results within this range of uncertainty for the same data. A 
poor distribution of seismograph stations (resulting in insufficient polarity data for the net 
diagram), erroneous polarity readings and differences in model assumptions (e.g., in the 
velocity models used) may result in still larger deviations between the model solution and the 
actual fault planes. One should also be aware that the assumed constant angular (45o) 
relationship between the fault plane on the one hand and the pressure and tension axis on the 
other hand is true in fact only in the case of a fresh rupture in a homogeneous isotropic 
medium. It may not be correct in the stress environment of real tectonic situations (i.e., P and 
T ≠ σ1 and -σ3, respectively; see discussion in sub-section 3.1.2.4). 
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1.1  Aim 
 
The exercise aims at: 
-  Understanding how fault slip affects the polarities of P-waves; 
-  Understanding the presentation of P-wave polarities in an equal angle (Wulff net) or 

equal area projection (Lambert-Schmidt net) of the focal sphere; 
- Constructing a fault-plane solution and the related parameters (P- and T-axes, 

displacement vector) for a real earthquake; 
- Relating the fault-plane solution to the tectonic setting of the epicentral area. 
 
 
2  Data and procedures 
 
Before a fault-plane solution for a teleseismic event can be constructed, the following steps 
must be completed: 
a) Interpretation of P-wave first-motion polarities from seismograms at several stations; 
b) Calculation of epicentral distances and source-to-station azimuths for these stations; 
c) Calculation of the take-off angles for the seismic P-wave rays leaving the hypocenter 

towards these stations. This requires the knowledge of the focal depth and of the P-wave 
velocity at this depth (see EX 3.3). 

For the calculations b) and c) standard Earth velocity models are used (e.g., Kennett, 1991). 
In the case of local events it is necessary to determine which branch of the travel-time curve is 
arriving first. The events should be located, if possible, with a special layered crustal velocity 
model for that region. Most such programs provide both the source-station azimuths and take-
off angles in their output files. 
 
The exercise below is based on the definitions, relationships and diagrams (Figs. 3.27 – 3.33) 
given in the NMSOP, Chapter 3, section 3.4.2 “Manual determination of fault plane 
solutions.”. As an example consider the data in Table 1 that was determined following steps 
a)-c), by using the program HYPO71, for a locally recorded aftershock of the Erzincan 
earthquake in Turkey (Date: 12.04.1992, Ml = 2.8 , latitude = 39.519° N, longitude = 39.874° 
E, source depth h = 3 km; station distance up to 50 km). 
 
Note: The take-off angles, AIN, calculated for a ray arriving at a given seismic station may 
vary significantly depending on the assumed velocity model in the source region. Also, for an 
average single layer crustal model of 30 to 40 km thickness, all P-wave first arrivals within a 
distance of about 120 - < 200 km are Pg and up-going. That is, they emerge only from the 
upper half of the focal hemisphere. Also, when using HYPO71 with the average global two-
layer crust according to the velocity model IASP91 (Kenneth 1991) only upper hemisphere 
take-off angles would have been calculated for the first P-wave arrivals up to distances of 50 
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km. But in the epicentral area under consideration a significant velocity increase in the upper 
crust was already found at 4 km depth (increase of vp =  5.3 km/s to 6.0 km/s). Accordingly, 
stations up to 50 km distance were reached by upper or lower focal sphere rays (see Fig. 
3.29). Since only lower hemisphere projections will be used in the exercise values, for upper 
hemisphere rays (AIN > 90°) must be corrected according to Fig. 3.28. Conclusion: AIN 
calculations based on strongly biased velocity models might result in inconsistent fault-plane 
solutions or not permit a proper separation of polarity readings into quadrants at all! 
 
Table 1 gives the needed primary data. They were taken from the output file of the program 
HYPO71 with which the event was located. The first five columns of this file contain, as an 
example for the two stations ALI and ESK in Tab. 1, the following data:  
 
STN DIST AZM AIN PRMK 
ALI   3.7   40 130 IPD0 
ESK 22.7 312 62 IPU1 

 
with STN - station code; DIST - epicentral distance in km; AZM - azimuth towards the station 
clockwise in degree from north; AIN - take-off angle of the ray towards the station, measured 
as in Fig. 3.28, and calculated for the given structure-velocity model; PRMK - P-wave reading 
remarks. In the column PRMK  P stands for P-wave onset, I for impulsive (sharp) or E for 
emergent (less clear) onset, D for clear (or - for poor) dilatational (downward) first motion, U 
for clear (or + for poor) compressional (upward) first motion as read at the station. The last 
character may range between 0 and 4 and is a measure of the quality (clarity) of the onset and 
thus of the weight given to the reading in the calculation procedure, e.g., 4 for zero and 0 for 
full weight. In case of the above two stations the values for ALI would need to be corrected to 
get the respective values for the equivalent lower hemisphere ray, i.e., AINc = 180° - 130° = 
50° and AZMc = 180° + 40° = 220° while the values for ESK can be taken unchanged from 
the HYPO71 output file. 
 
 

3.3  Tasks 
 
Task 1: 
If in Table 1 AIN > 90°, then correct take-off angles and azimuths for lower hemisphere 
projection:  AINc = 180° - AIN,  AZMc = AZM(<180°) + 180° or AZM(≥180°) - 180°. In 
case of AIN < 90° the original values remain unchanged.  
 
Task 2: 
Place tracing paper or a transparency sheet over the Wulff or Lambert-Schmidt net projection 
(see Fig. 3.27a or b in 3.4.2). Mark on it the center and perimeter of the net as well as the N, 
E, S and W directions. Pin the marked sheet center with a needle to the center of the net.  
 
Task 3:  
Mark the azimuth of the station on the perimeter of the transparency and rotate the latter until 
the tick mark is aligned along an azimuth of 0°, 90°, 180° or 270°. Measure the take-off angle 
from the center of the net along this azimuth. This gives the intersection point of the particular 
P-wave ray with the lower hemisphere. Mark on this position the P-wave polarity with a neat 
+ for compression or ο for dilatation (U or D in Tab. 1) using different colors for better 
distinction of closely spaced polarities of different sign. Note: The proper distance (d) of the 
polarity entry from the center of the net corresponds to d = r × tan( AIN / 2) for the Wulff net 
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and d = r × sin( AIN / 2) for the Lambert-Schmidt net with r the radius of the given net. In 
case that rays left the source through the upper hemisphere (AIN > 90°) AINc for lower 
hemisphere projection has to be calculated and used! 
 
 
Table 1  Original and corrected values of ray azimuth (AZM and AZMc) and take-off angles 
(AIN and AINc) towards stations of a temporary network which recorded the Erzincan 
aftershock of April 12, 1994. POL - polarity of P-wave first motions. 
 

STA AZM 
(degree) 

AIN 
(degree) 

POL AZMc 
(degree) 

AINc 
(degree) 

 
ALI 

ME2 

KAN 

YAR 

ERD 

DEM 

GIR 

UNK 

SAN 

PEL 

GUN 

ESK 

SOT 

BA2 

MOL 

YUL 

ALT 

GUM 

GU2 

BAS 

BIN 

HAR 

KIZ 

AKS 

SUT 

 
  40 

134 

197 

  48 

313 

330 

301 

336 

  76 

327 

290 

312 

318 

  79 

297 

  67 

  59 

320 

320 

308 

295 

  24 

311 

284 

295 

 
130 

114 

112 

111 

103 

102 

102 

101 

  62 

  62 

  62 

  62 

  62 

  62 

  62 

  62 

  62 

  62 

  62 

  62 

  62 

  62 

  62 

  62 

  62 

 
D 

D 

D 

D 

D 

D 

U 

D 

U 

D 

U 

U 

D 

U 

U 

U 

D 

U 

D 

D 

U 

D 

U 

D 

U 

  

 
Task 4:  
By rotating the transparent sheet with the plotted data over the net try to find a great circle 
which separates as good as possible the expected quadrants with different first motion signs. 
This great circle represents the intersection trace of one of the possible fault (or nodal) planes 
(FP1) with the lower half of the focal sphere. Note 1: All N-S connecting lines on both nets 
are great circles! Note 2: Inconsistent polarities that are close to each other may be due to 
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uncertainty in reading relatively small P-wave amplitudes. The phenomemon occurs 
particularly for takeoff angles near nodal (fault) planes. Thus, clusters of inconsistent 
polarities may guide you in finding the best separating great circle. However, be aware that 
isolated inconsistent polarities might be due to false polarity switching or erroneous first 
motion polarity reading at the seismic station.  
 
Task 5:  
Mark point A at the middle of FP1 and find, on the great circle perpendicular to it, the pole P1 
of FP1, 90o apart (see Fig. 3.31). All great circles, passing this pole are perpendicular to the 
FP1. Since the second possible fault plane (FP2) must be perpendicular to the FP1, it has to 
pass P1. Find, accordingly, FP2 which again has to separate areas of different polarity. 
 
Task 6:  
Find the pole P2 for FP2 (which is on FP1!) and delineate the equatorial plane EP. The latter 
is perpendicular to both FP1 and FP2, i.e., a great circle through the poles P1 and P2. The 
intersection point of FP1 and FP2 is the pole of the equatorial plane (P3). 
 
Task 7:  
Mark the position of the pressure and tension axes on the equatorial plane and indicate their 
direction towards (P) and from the center (T) of the considered net (see Fig. 3.31). Their 
positions on the equatorial plane lie in the center of the respective dilatational (- for P) or 
compressional (+ for T) quadrant, i.e., 45° away from the intersection points of the two fault 
planes with the equatorial plane. Note: 
 
 
   All angles in the net projections have to be measured along great circles! 
 

 
 
Task 8:  
Mark the slip vectors, connecting the intersection points of the fault planes with the equatorial 
plane, with the center of the considered net If the center lies in a tension quadrant, then the 
slip vectors point to the net center (see Fig. 3.31). If it lies in a pressure quadrant, then the slip 
vector points in the opposite direction. The slip vector shows the direction of displacement of 
the hanging wall. 
 
Task 9:  
Determine the azimuth (strike direction φ) of both FP1 and FP2. It is the angle measured 
clockwise against North between the directional vector connecting the center of the net with 
the end point of the respective projected fault trace lying towards the right of the net center 
(i.e., with the fault plane dipping towards the right; see Fig. 3.31). 
 
Task 10:  
Determine the dip angle δ (measured from horizontal) for both FP1 and FP2 by putting their 
projected traces on a great circle. Measure  δ  as the difference angle from the outermost great 
circle towards the considered fault plane trace. 
 
Task 11:  
Determine the slip direction (i.e., the sense of motion along the two possible fault planes. It is 
obtained by drawing one vector each from the center of the net to the poles P1 and P2 of the 



 135

nodal planes (or vice versa from the poles to the center depending on the sign of the rake 
angle λ). The vector from (or to) the center to (or from) P1 (P2) shows the slip direction along 
FP2 (FP1).The rake angle  λ  is positive in case the center of the net lies in the tension (+) 
quadrant (i. e. an event with a thrust component) and negative when it lies in the pressure (-) 
quadrant (event with a normal faulting component). In the first case λ is 180° - λ*.  λ* has to 
be measured on the great circle of the respective fault plane between its crossing point with 
the equatorial plain and the respective azimuth direction of the considered fault plane (see Fig. 
3.31). In the second case λ = - λ*. For a pure strike slip motion (δ = 90° ) λ = 0 defines a left 
lateral strike-slip and  λ = 180° defines a right-lateral strike-slip.  
 
Task 12:  
The azimuth of the pressure and the tension axes, respectively, is equal to the azimuth of the 
line connecting the center of the net through the P and T point with the perimeter of the net. 
Their plunge is the dip angle of these vectors against the horizontal (to be measured as for δ). 
 
Task 13:  
Estimate the parameters of the fault planes and of the stress axes for the Erzincan aftershock 
and insert your results into Table 2 below: 
 
Table 2 
 
     strike   dip      rake 
 
 Fault plane  1 
 
 Fault plane  2 
  
 
             azimuth                   plunge 
 
 Pressure axis  
 
 Tension axis 
 
 
Note: The angles may range between: 
 0°  <   strike   <  360°               0°  <  incidence angle  <  180° 
 0°  < azimuth <  360°  
 0°  <     dip    <     90°  
 0° <   plunge  <     90° 
      -180° <      rake   <   180°  
 
Task 14: 
The question of which of the nodal planes was the active fault plane, and hence the other was 
the auxiliary plane, cannot be answered on the basis of the fault-plane solution alone. 
Considering the event in its seismotectonic context may give an answer. Therefore, we have 
marked the epicenter of the event in Figure 1 with an open star at the secondary fault F2. 
a) Decide which was the likely fault plane (FP1 or FP2)? 
b) What was the type of faulting? 
c) What was the direction of slip? and  
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d) Is your solution compatible with the general sense of plate motion in the area as well with 
the orientation of the acting fault and the orientation of stress/deformation in the area? 

(Yes or No)?  
 

Figure 1  Epicenters of aftershocks between March 21 and June 16, 1992 of the March 13, 
1992 Erzincan earthquake, Turkey. The open circles represent the main shock and its 
strongest aftershock on March 15, and the open star the analyzed aftershock. F1, F2 and F3 
are secondary faults to the North Anatolian Fault (NAF). Black arrows - directions of relative 
plate motion, open arrows - direction of maximum horizontal compression as derived from 
centroid moment tensor solutions of stronger earthquakes (courtesy of H. Grosser). 
 
 
4  Solutions 
 
In the Table 3 below the authors have given the data for their own  freehand fits  together with 
the values for the best PC fit to the data (in brackets). If your manually determined results 
differ by more than about 20o or even show a different type of faulting mechanism, you 
should critically check your data entries and/or fault-plane fits again.  
 

Table 3 
 
     strike   dip   rake 
 
      Fault plane  1 (FP1)        280o (278.5°)        40o (39.9°)   68o (67.4°) 
 
      Fault plane  2 (FP2)        130o (127.0o)       54o (53.7o)            108o (107.8o) 
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             azimuth                   plunge 
 
 Pressure axis                   205o (204.4o)        7o (7.1o)  
 
 Tension axis          90o (88.6o)      73o (74.0o)   
 
 
The answers to the questions in Task 14 are: 
 
a) FP2 was more likely the active fault. 
b) The aftershock was a thrust event with a very small right-lateral strike-slip component. 
c) The slip direction is here strike - rake azimuth, i.e., for FP2 130° - 108° = 12° from north. 

This is close to the direction of maximum horizontal compression (15°) in the nearby area 
as derived from centroid moment tensor solutions of stronger events. 

d) The strike of FP2 for this event agrees with the general direction of mapped surface fault 
strike and is consistent with the tendency of plate motion direction in the area under study. 
Therefore, it is highly probable that FP2 was the acting fault. 
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1  Aim 
 
This exercise shows how to estimate the source parameters seismic moment, size of the 
rupture plane, source dislocation and stress drop from data in the frequency domain only and 
how the results depend on the underlying model assumptions. These parameters could also be 
estimated in the time domain. However, for estimation in the time domain the records have to 
be converted into true ground motion (displacement) records. This may be a problem if the 
bandwidth of the recording system is limited (e.g., short-period records) or if the phase 
response of the system is not well known. For estimation in the frequency domain only the 
amplitude response of the instrument is needed. 
 
 
2  Data 
 
Figure 1 shows a velocity record (vertical component) of an aftershock of the 1992 Erzincan 
earthquake (Turkey). Figure 2 shows the corresponding displacement spectrum of the P-wave. 
The calculated spectrum was corrected for the amplitude response of the recording system 
(which includes both response of the velocity seismometer and the anti-aliasing filter of the 
recorder). Furthermore, the P-wave spectrum was corrected for attenuation, exp(iωt/2Qp ). Qp 
had been estimated beforehand from coda Qc- observations in the area under study assuming 
that Qp = 2.25 Qc. This is a good approximation under the assumption that vp/vs = 1.73, Qc = 
Qs and the pure compressional Qκ (κ - bulk modulus) is very large (→ ∞). In Figure 2 also the 
noise spectrum, treated in the same way as the P-wave spectrum, was computed and plotted in 
order to select the suitable frequency range for analysis (with signal-to-noise ratio SNR > 3). 
 
At low frequencies typical P- and S-wave spectra approach a constant amplitude level uo and 
at high frequencies the spectra show a decay that falls off as f 

-2  to f 
-3. Plotted on a log-log 

scale the spectrum can be approximated by two straight lines. The intersection point is the 
corner frequency fc. uo and fc are the basic spectral data from which the source parameters will 
be estimated. Event and material data required for further calculations are the epicentral 
distance Δ, the source depth h, the  rock density ρ, the P-wave velocity vP, and the averaged 
radiation pattern Θ for P-waves. Respective values are given under 3.1 below. Other needed 
parameters can then be calculated. 

 
 
Note: The apparent increase of spectral amplitudes in Figure 2 for f > 35 Hz is not real but 
due to antialiasing filtering of the record. Thus, this increase should not be considered in the 
following analysis. 
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Figure 1  Record of an Erzincan aftershock (vertical component). For the indicated P-wave 
window the displacement spectrum shown in Figure 2 has been calculated. 

 

 
Figure 2  P-wave (upper curve) and noise spectrum (lower curve) of the record shown in 
Figure 1, corrected for the instrument response and attenuation. 
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3  Procedures 
 
The parameters to be estimated are: 
-   Seismic moment       Mo  = μ⎯D A             (1) 
    (with μ - shear modulus; ⎯D - average source dislocation, and  A - size of the rupture plane) 
-   Source dislocation ⎯D 
-   Source dimension (radius R and area A) 
-   Stress drop Δσ 
 
The following relationships hold: 
 
 
3.1  Seismic moment Mo 
 
Under the assumption of a homogeneous Earth model and constant P-wave velocity  vp, the 
seismic moment M0  can be determined from the relationship: 
 

M0  =  4  π  r vp
3  ρ  uo  /  ( Θ  Sa )         (2) 

 
In the case with:    density     ρ  =  2.7 g/cm3 

 

      P-wave velocity  vp  =  6 km/sec  
 
                source depth    h  =  11.3 km 
 
      epicentral distance  Δ  =  18.0 km 
 
      hypocentral distance   r  =  √ ( h2 + Δ2 )  
      (travel path) 
      incidence angle   i  =  arc cos ( h / r ) 
        
      free surface amplification  Sa  for P-waves 
 
      averaged radiation pattern Θ  =  0.64 for P-waves. 
 
Note the differences in dimensions used! M0 has to be expressed in the unit  Nm = kg m2 s-2. 
Sa can be determined by linear interpolation between the values given in Table 1. They were 
computed for the above given constant values of vp and ρ (homogeneous model) and 
assuming a  ratio vp/vs = 1.73.  i is the angle of incidence, measured from the vertical.     

 
Table 1  Surface amplification Sa for P-waves; i  is the incidence angle. 

 
i Sa i Sa i Sa 
0 
5 
10 
15 
20 
25 

2.00 
1.99 
1.96 
1.92 
1.86 
1.79 

30 
35 
40 
45 
50 
55 

1.70 
1.60 
1.49 
1.38 
1.26 
1.14 

60 
65 
70 
75 
80 
85 

1.02 
0.90 
0.79 
0.67 
0.54 
0.35 

*

i

r 

Source 

Epicentre 
Station 

i 
h

Δ 
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3.2  Size of the rupture plane 
 
For estimating the size of the rupture plane and the source dislocation one has to adopt a 
kinematic (geometrical) model, describing the rupture propagation and the geometrical shape 
of the rupture area. In this exercise computations are made for three different circular models 
(see Table 2), which differ in the source time function and the crack velocity vcr. vs is the S-
wave velocity, which is commonly assumed to be vs = vp / √3.  
 

Table 2  Parameters of some commonly used kinematic rupture models. 
 

 1. Brune             (1970) vcr = 0.9 Vs Kp = 3.36 Ks =2.34 
 2. Madariaga I   (1976) vcr = 0.6 Vs Kp = 1.88 Ks = 1.32 
 3. Madariaga II  (1976) vcr = 0.9 Vs Kp = 2.07 Ks = 1.38 

 
 
The source radius R (in m) can then be computed from the relationship 
 
    R  =  vs  Kp/s  /  2π fcp/s         (3) 
 
with vs – shear-wave velocity in km/s, fcp/s - corner frequency of the P- or S-waves, 
respectively, in Hz and Kp and Ks being the related model constants and vs. The differences in 
Kp and Ks between the various models are due to different assumptions with respect to crack 
velocity and the rise time of the source-time function. Only Kp has to be used in the exercise 
(P-wave record!). The size of the circular rupture plane is then  
 

A = π R2.            (4) 
 
 
3.3  Average source dislocation ⎯D 
 
According to (1) the average source dislocation is 

 
⎯D = M0/ (μA ).          (5) 

 
Assuming vs = vp/1.73 it can be computed knowing M0, the source area A and the shear 
modulus μ = vs

2 ρ.  
 
 
3.4  Stress drop 
 
The static stress drop Δσ describes the difference in shear stress on the fault plane before and 
after the slip. According to Keilis Borok (1959) the following relationship holds for a circular 
crack with a homogeneous stress drop: 
 

Δσ = 7 M0/ (16 R3).          (6) 
 
The stress drop is expressed in the unit of Pascal,   Pa = N m-2 = kg m-1 s-2 = 10-5 bar.  
 
 



 143

4  Tasks 
 
Task 1: 
Select in Figure 2 the frequency range f1 to f2 that can be used for analysis (SNR > 3): 
 
 f 1  = ............... Hz   f 2  = ............... Hz 
 
Task 2: 
Estimate the low-frequency level, uo , of the spectrum by approximating it with a  horizontal 
line. Note in Figure 2 the logarithmic scales and that the ordinate dimension is nm s = 10-9m s. 
 
 uo  = .................... m s 
 
Task 3: 
Estimate the exponent, n, of the high frequency decay, f -n ; mark it by an inclined straight 
line. 
 n = .......... 
 
Task 4: 
Estimate the corner frequency, fcp  (the intersection between the two drawn straight lines). 
 
 fcp = ............... Hz 
 
Task 5: 
Calculate from the given event parameters and relationships given in 3.1 and Table 1 the 
values for: 
 
r = ………km   i =……….°  Sa = ……….  Mo = …………Nm. 
 
Task 6: 
Using the equations (3), (4), (5) and (6) calculate for the three circular source models given in 
Table 2 the parameters  

a) source radius R and  source area A,  
b) shear modulus μ and average displacement ⎯D and  
c) stress drop Δσ.  

Write the respective values in Table 3 
 
Table 3 
 

Model R [m] A [m2] ⎯D [m] Δσ [MPa] 
 
  1. Brune 
 

    

 
  2. Madariaga I 
 

    

 
 3. Madariaga II 
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Note:  Since Δσ ∼ R-3 the estimate of stress drop very much depends on fc, a parameter which 
can not be estimated very precisely from real spectral data. In the case of non-circular, e.g., 
rectangular fault ruptures, two corner frequencies may exist which are controlled by the width 
W and the length L of the rupture plane. In addition, differences in the assumed mode of crack 
propagation (e.g., unilateral, bilateral, or radial) and the velocity of crack propagation, vcr, 
influence the parameters calculated from spectral data (see Information Sheet IS 3.1). 
Accordingly, stress drop values may be, in the worst case, uncertain up to about two orders of 
magnitude. Therefore, in studying possible systematic differences in source parameters 
derived from spectral data for events in a given area one should always stick to using one type 
of model. However, one must be reasonably sure about the validity of assuming that the 
events have similar modes of faulting and crack propagation. 
 
 
5  Solutions 
 
Although individual visual parameter readings from Figure 2 might be subjective, they should 
not differ by more than about  ± 10% from the values given here for tasks 1 to 5 but may be 
larger for 6. Acceptable average values for the read and calculated parameters are for: 
 
Task 1: f1 = 2 Hz,  f2 = 30 Hz 
 
Task2:  uo = 3 × 10-7 m s 
 
Task 3: n = 3 
 
Task 4: fcp = 14.4 Hz 
 
Task 5: r = 21.3 km i = 58o,  Sa = 1.07,  Mo = 6.8 × 1013 N m 
 
Task 6: 
a) R1 = 129 m,   A1 = 5.23 × 104 m2  
 R2 =  72 m,   A2 = 1.63 × 104 m2 

 R3 =  79 m,   A3 = 1.96 × 104 m2 

b)  μ = 3.24 × 1010 kg m-1 s-2  D1 = 4.0 × 10-2 m 
      D2 = 1.3 × 10-1 m 
      D3 = 1.1 × 10-1 m 
c) Δσ1 = 13.8 MPa 

Δσ2 = 79.7 MPa 
Δσ3 = 60.3 Mpa 
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