Norwegian National Seismic Network

Technical Report No. 31

Processing data for the ScanARRAY for events in Finnmark

Prepared by

NIL ERYILMAZ

Dept. of Earth Science, University of Bergen
Allégt.41, N-5007 Bergen, Norway
Tel: +47-55-583600 E-mail: seismo@geo.uib.no
May 2019

1. Introduction

In the Finnmark area of Northern Norway, there are postglacial faults (Figure 1). These faults are seen in the seismicity recorded in the NNSN data base. The NNSN database contains 597 events from the area (Figure 2). However, there are few seismic stations nearby limiting the accuracy of the epicenters.

Figure 1: Location of the Nordmannvikdalen and Stuoragurra postglacial faults in northern Norway. (Dehls et al., 2000).

Figure 2: 597 NNSN events in Northern Norway area from 1980 to 2019. Explosions and probable explosions are excluded.

From June, 2013 to end of 2016, the ScanARRAY (Thybo et al., 2012) temporary stations operated in Northern Norway (Figure 3). The purpose of this study is to complement the NNSN data base with readings from the ScanARRAY to better define the seismicity in the area.

Figure 3: ScanArray seismic stations in Finnmark (Thybo et al., 2012)

The ScanARRAY operated between the dates June, 2013 and the end of 2016. The area was selected to be studied was $68.5-71.5^{\circ} \mathrm{N}$ and $16-32^{\circ} \mathrm{E}$ (Figure 4).

Figure 4: The coordinates of study area.

In the NNSN data base, there were 148 earthquakes in the study period and area. Notice the alienation of the fault (Figure 5,6 and 7).

Figure 5: Earthquake locations for the study area and time period. Explosions and probable explosions are not included. Alienation of Stuoragurra fault (blue line).

Figure 6: The digitized points on Stuoragurra fault line. (E: $69.20^{\circ} \mathrm{N}-32.12^{\circ} \mathrm{E}$, K: $69.40^{\circ} \mathrm{N}-23.50^{\circ}$ E, I: $69.50^{\circ} \mathrm{N}-23.78^{\circ} \mathrm{E}, \mathbf{G}: 69.58^{\circ} \mathrm{N}-24^{\circ}$ E, H: $69.68^{\circ} \mathrm{N}-24.50^{\circ}$ E, F: $\left.69.90^{\circ} \mathrm{N}-24.75^{\circ} \mathrm{E}\right)$

Figure 7: Stuoragurra fault (yellow line).

Since many of the earthquakes were very small and unlikely to be recorded on the noisy field stations, we started to check only the events with magnitude larger than or equal to 1.5 , see Figure 8.

Figure 8: Earthquake locations for the study area from June 2013 to end of 2016 with magnitude ≥ 1.5.

Waveforms for the 35 events were extracted from the ScanARRAY archive at the GFZ. The events were picked with P and S waves and amplitudes were read. Magnitudes (ML) were calculated and the events were located together with the NNSN readings. The table below illustrates the old data which was already registered in NNSN and the combined version of the old data with ScanARRAY data.

Table 1: Combination of NNSN and ScanARRAY data (1st line of each hypocenter pair) and old NNSN (2nd line) location. Abbreviations are: lat: latitude, lon: longitude, agen: agency, SN : number of stations, mag1,23,: Magnitudes.

```
2013 8 1 0313 16.3 L 68.510 20.202 18.0 BER 30 1.2 2.1LBER 2.8WBER 2.8LNAO
OLD: 8 1 313 17.0 L 68.563 20.261 22.5 BER 18 .90 2.OLBER 2.8LNAO
2013 816 1601 36.2 LQ 70.293 17.943 12.2 BER 12 0.6 1.1LBER 2.OLNAO
OLD: 816 1601 37.2 LQ 70.262 18.043 15.0 BER 10 0.6 0.9LBER 2.OLNAO
2013 1013 1852 17.1 LQ 69.864 24.917 13.0F BER 30 0.9 2.4LBER 2.7LNAO
OLD: 1013 1852 16.7 LQ 69.878 24.966 13.0F BER 22 0.8 2.2LBER 2.7LNAO
2013 12 6 1927 59.6 LQ 70.145 16.717 2.6 BER 34 0.9 1.9LBER 2.8WBER 2.5LNAO
OLD: 12 6 1927 59.6 LQ 70.172 16.820 1.90 BER 20 .50 1.9LBER 2.5LNAO
2014 118 1859 29.9 LQ 69.867 25.261 0.5 BER 35 0.6 2.4LBER 3.1WBER 2.8LNAO
OLD: 118 1859 29.9 LQ 69.889 25.319 4.50 BER 24 . 60 2.3LBER 2.8LNAO
```

2014	325	0412	46.8	LQ	69.456	24.298	11.0F	BER	18	1.2	1. 5LBER		1.6LHEL
OLD :	325	412	46.9	LQ	69.444	24.341	11.0F	BER	11	. 90	1.5LBER		1.6LHEL
7													
2014	514	2204	36.5	LQ	70.379	17.674	12.1	BER	12	0.4	1.4LBER		
OLD:	514	224	37.1	LQ	70.428	17.441	31.0	BER	5	. 20	1.6LBER		
8													
2014	819	1500	20.4	L	69.647	29.909	0.0	BER	11	0.8	1. 6LBER		2. 5LNAO
OLD :	819	1500	22.1	L	69.609	29.706	0.0	BER	5	0.5			2.5 LNAO
9													
2014	829	0255	50.4	L	69.068	21.557	0.0	BER	17	1.2	1.8LBER		1.5LHEL
OLD:	829	0255	50.2	L	69.045	21.406	12.1	BER	10	0.7	0.9LBER		1.5LHEL
10													
2014	93	2258	47.9	L	69.036	18.251	15.0	BER	23	1.6	1.5LBER		1.5LHEL
OLD :	93	2258	47.8	L	69.040	18.238	15.0	BER	16	1.8	1.5LBER		1.5LHEL
11													
2014	1121	1208	46.3	L	69.679	30.093	0.0	BER	8	1.1	1.4LBER	1.7WBER	
OLD:	1121	128	47.4	L	69.882	30.283	15.0	BER	4	. 80	1.5LBER		
12													
2014	1223	1925	52.7	LQ	69.743	24.883	12.7	BER	23	0.3	1.6LBER	2. OWBER	1.7LHEL
OLD :	1223	1925	52.7	LQ	69.742	24.863	13.1	BER	18	. 30	1.5LBER		1.7LHEL
13													
2015	43	1850	15.7	L	69.415	30.650	15.0	BER	19	1.6	1.6LBER		1.9LHEL
OLD:	43	1850	15.5	L	69.449	30.602	15.0	BER	13	1.0	1.5LBER		1.9LHEL
14													
2015	61	0842	21.0	LQ	70.396	18.373	15.0	BER	22	0.7	2.1LBER		2. 5LNAO
OLD :	61	0842	20.7	LQ	70.408	18.379	15.0	BER	12	0.5	1.9LBER		2.5 LNAO
15													
2015	625	2315	57.6	L	69.446	31.007	0.0	BER	23	1.0	2.1LBER		
OLD:	625	2315	57.1	L	69.559	30.977	0.00	BER	13	. 60	2.1LBER		
16													
2015	720	0236	54.8	LQ	68.853	23.335	8.8	BER	22	0.3	1.7LBER		2. OLNAO
OLD :	720	0236	54.7	LQ	68.860	23.330	11.1	BER	16	0.2	1.6LBER		2. OLNAO
17													
2015	721	0656	49.7	L	69.649	29.994	0.0	BER	18	0.9	1.8LBER		2.4LNAO
OLD:	721	0656	50.9	L	69.699	29.998	15.0	BER	9	0.6	1.5LBER		2.4LNAO
18													
2015	731	1727	58.8	LQ	69.348	24.238	6.0	BER	17	0.6	1.7LBER		1.5LHEL
OLD :	731	1727	58.7	LQ	69.349	24.237	6.1	BER	14	0.6	1.6LBER		1.5LHEL
19													
2015	81	1142	43.1	LQ	69.439	24.112	15.0	BER	71	1.4	2.7LBER		2.8LHEL
OLD:	81	1142	42.7	LQ	69.435	24.106	15.0	BER	37	. 80	2.7LBER	2.8WBER	2.8LHEL
20													
2015	814	1128	56.2	L	69.669	29.872	0.0	BER	9	1.2	1.7LBER		
OLD :	814	1128	55.4	L	69.925	29.792	0.0	BER	5	0.7	1. 6LBER		
21													
2015	922	1101	8.9	LQ	69.954	21.071	0.0	BER	26	0.9	1.8LBER	2.0WBER	1.8LHEL
OLD:	922	1101	8.3	LQ	70.040	20.965	7.2	BER	17	0.6	1.7LBER	2.0WBER	1.8LHEL
22													
2015	930	2331	12.6	LQ	69.432	23.879	0.0	BER	24	0.5	1.6LBER	1.9WBER	1.7LHEL
OLD :	930	2331	12.5	LQ	69.431	23.887	2.0	BER	18	0.5	1.4LBER	1.9WBER	1.7LHEL
23													
2015	1024	1312	16.0	L	69.829	20.492	0.0	BER	23	0.9	1.7LBER		2.4LNAO
OLD:	1024	1312	16.9	L	69.801	20.286	15.0	BER	18	0.5	1.6LBER		2.4LNAO
24													
2015	1026	0449	14.7	LQ	69.453	24.061	15.0	BER	16	0.5	1. 5LBER		1. 8LNAO
OLD :	1026	0449	14.8	LQ	69.444	24.055	15.0	BER	12	0.5	1. 5LBER		1. 8LNAO
25													
2015	1027	2034	52.8	LQ	69.839	25.122	0.0	BER	16	0.4	1.5LBER		1.6LHEL
OLD:	1027	2034	52.9	LQ	69.837	25.162	8.2	BER	12	0.5	1.4LBER		1.6LHEL
26													
2015	1117	1614	6.7	LQ	68.980	16.280	16.2	BER	49	0.7	2.6LBER	2. 3WBER	2.1LHEL
OLD :	1117	1614	6.7	LQ	68.983	16.275	16.6	BER	46	. 70	2. 2LBER	2.3WBER	2.1LHEL
27													
2015	1120	1543	19.6	LQ	71.306	31.779	15.0	BER	14	0.9	2.3LBER		2.4LNAO
OLD:	1120	1543	18.8	LQ	71.333	31.724	12.1	BER	10	. 60	2.1LBER		2. 4LNAO
28													
2015	1126	2359	1.8	LQ	69.924	16.913	15.0	BER	13	0.4	1.6LBER		1.6LHEL

```
OLD: 1126 2359 1.5 LQ 69.930 16.893 12.1 BER 11 0.3 1.6LBER
    1.6LHEL
    2015 12 4 0425 57.4 LQ 69.070 24.219 4.8 BER 32 0.7 1.7LBER 1.9WBER 1.6LHEL
OLD: 12 4 0425 57.3 LQ 69.068 24.230 4.4 BER 28 0.7 1.5LBER 1.9WBER 1.6LHEL
2016 316 0436 5.8 LQ 69.869 24.907 0.1 BER 20 0.7 1.8LBER 1.8LHEL
OLD: 316 0436 5.8 LQ 69.868 24.908 0.1 BER 14 0.7 1.8LBER 1.8LHEL
2016 421 0054 27.5 LQ 69.714 16.279 15.0 BER 31 0.9 2.3LBER 2.6LHEL
OLD:421 0054 28.1 LQ 69.697 16.341 18.1 BER 19 0.5 2.1LBER 2.6LHEL
2016 625 0123 39.0 LQ 70.007 17.290 0.0 BER 17 0.7 1.2LBER 1.5LHEL
OLD: 625 0123 38.7 LQ 70.049 17.253 0.4 BER 15 0.4 1.1LBER 1.5LHEL
2016 715 0406 48.7 LQ 70.055 26.205 15.3 BER 15 0.7 1.5LBER 1.8LHEL
OLD: 715 0406 48.7 LQ 70.034 26.264 21.1 BER 13 0.7 1.6LBER 1.8LHEL
2016 722 0502 43.6 LQ 71.398 18.408 15.0F BER 21 0.5 1.6LBER 2.6LNAO
OLD: 722 0502 43.5 LQ 71.398 18.421 15.0F BER 20 0.5 1.6LBER 2.6LNAO
2016 1218 1242 14.0 LQ 70.388 17.624 15.0 BER 17 0.8 2.1LBER 2.1LHEL
OLD: 1218 1242 14.0 LQ 70.389 17.624 15.0 BER 16 0.8 2.2LBER 2.1LHEL
```

35 events which are combination of both data sources were located (Figure 9). Notice that all events were recorded on the ScanARRAY, but some with only a few stations.

Figure 9: New and old locations of the events with $\mathrm{M}_{\mathrm{L}} \geq 1.5$. The old locations are black and new red. Notice the alienation in central Finnmark.

The mapped fault does not correspond to the epicenters. This was also observed in earlier studies, see Figure 10.

Figure 10: Distribution of the earthquakes along the fault line. (Bungum and Lindholm, 1996)

The average difference between old and new locations was calculated, see Table 2.

Table 2: Differences between new and old locations. The compared content is origin time, RMS, hypocenter and magnitudes. For each parameter, the average difference with standard deviations is calculated.

	Origin time	RMS	Lat	Lon	Depth	Ml
Average diff	0.1	-0.2	0.025	-0.012	3.6	0.0
Standard dev	0.6	0.2	0.060	0.086	5.7	0.0
Number of values			35	31	35	

Fault Plane Solution

The event with largest number of readings in the area is the event with magnitude $\mathrm{M}_{\mathrm{L}}=2.7$, August 1, 2015. This was also the largest event in this data set. The event was relocated with stations less than 150 km distance (xnear=50, xfar=150). A new depth of 9 km was obtained. Depth was then fixed to 9 km . The fault plane solution was made with polarity. The solutions with FOCMEC (blue), PINV (green) and FPFIT (red) are shown in Figure 11. All had one polarity error and degree increment (spacing in the grid search) is 2 degrees.

Figure 11: Fault plane solution with 16 polarities and one error. All 3 solutions are similar.

The error was on KTK1 but it is a very clear dilatational signal, see Figure 12.

Figure 12: First motion on station KTK1.

The fault plane solution was also made with depths 5 and 15 km (Figure 13,14) and the solutions were very similar to the solution at 9 km . The solutions at 9 km were kept as the final solution.

Figure 13: Fault plane solutions for depth fixed to 5 km .

Figure 14: Fault plane solutions for depth fixed to 15 km .

Events near the fault were selected with magnitude smaller than 1.5 in central Finnmark area in order to check if reading were possible for those smaller events (Figure 15). Consequently, 33 events were found (Table 2).

Figure 15: Location of the data with magnitude smaller than 1.5 in central Finnmark. The 33 events selected are inside the polygon.

Table 3: 33 events magnitude smaller than 1.5 in central Finnmark. Combination of NNSN and ScanARRAY data (1st line of each hypocenter pair) and old NNSN (2nd line) location. New means a new event was found. There are 14 events which does not have a new phases. Abbreviations are: lat: latitude, lon: longitude,agen: agency, SN: number of stations, mag1,23,: Magnitudes.

```
2013 919 1824 25.3 LQ 69.891 25.786 2.3 BER 10 0.7 1.0LBER 2.OWBER 1.3LHEL
OLD: 919 1824 25.3 LQ 69.891 25.763 1.0 BER 8 0.6 1.2LBER 1.3LHEL
2013 1026 1722 51.6 LQ 68.894 23.385 9.7 BER 15 0.8 0.9LBER
OLD: 1026 1722 51.7 LQ 68.907 23.380 11.9 BER 13 0.9 0.9LBER
2013 1030 1229 4.5 LQ 68.498 20.573 0.0 BER 18 0.9 1.4LBER
OLD: 1030 1229 6.0 LQ 68.502 20.620 13.6 BER 13 0.9 1.4LBER
2013 11 5 2140 57.5 LQ 68.785 23.542 15.0 BER 6 0.4 0.5IBER
OLD: 11 5 2140 57.6 LQ 68.790 23.527 12.7 BER 6 0.3 0.5LBER O.3LHEL
2014 2 5 1431 53.1 LQ 69.331 26.258 0.0 BER 8 0.5 1.0LBER 1.OLHEL
OLD: 2 5 1431 53.2 LQ 69.342 26.244 3.4 BER 7 0.5 0.9LBER 1.OLHEL
2014 223 2335 4.6 LQ 69.039 22.201 14.8 BER 8 0.7 0.6LBER 0.7LHEL
OLD: 223 2335 4.5 LQ 69.037 22.190 16.1 BER 7 0.7 0.7LBER O.7LHEL
2014 623 1456 42.2 L 68.768 22.825 0.0 BER 9 0.6 0.7LBER 1.OLHEL
```

OLD:	623	1456	42.2	L	68.767	22.821	0.0	BER	7	0.6	0.8LBER		1. OLHEL
8													
2015	214	0145	22.6	LQ	69.076	23.279	3.0	BER	10	0.5	0.7LBER		0.8LHEL
OLD :	214	0145	22.6	LQ	69.076	23.279	3.0	BER	10	0.5	0.7LBER		0.8LHEL
9													
2015	45	1120	55.9	LQ	69.084	23.467	7.5	BER	10	0.6	0.8LBER		1. OLHEL
OLD:	45	1120	55.9	LQ	69.084	23.463	7.4	BER	9	0.6	0.7LBER		1. OLHEL
10													
2015	415	2236	28.3	LQ	70.046	27.211	3.2	BER	14	0.6	0.9LBER		1. OLHEL
OLD:	415	2236	29.4	LQ	70.033	26.997	1.3	BER	10	0.5	0.9LBER		1. OLHEL
11													
2015	51	1207	16.4	LQ	68.833	23.307	6.1	BER	16	0.6	1.1LBER		1.2LHEL
OLD :	51	1207	16.3	LQ	68.834	23.295	3.8	BER	14	0.5	1. OLBER		1.2LHEL
12													
2015	610	1344	16.4	L	68.687	22.992	0.0	BER	3	0.6	0.5LBER		
OLD:	610	1344	16.4	L	68.687	22.992	0.0	BER	3	0.6	0.5LBER		
13													
2015	715	1720	25.9	LQ	69.957	25.147	13.3	BER	13	0.6	1.4LBER		1.2LHEL
OLD :	715	1720	25.7	LQ	69.981	25.182	15.9	BER	9	0.6	1.4LBER		1.2LHEL
14													
2015	715	2307	12.8	LQ	68.944	23.250	4.0	BER	10	0.4	$0.7 L \mathrm{BER}$		0.8LHEL
OLD:	715	2307	12.8	LQ	68.944	23.250	4.0	BER	10	0.4	$0.7 L B E R$		0.8LHEL
15													
2015	719	2250	54.5	LQ	69.310	23.847	0.0	BER	21	0.7	1.2LBER		1. OLHEL
OLD :	719	2250	55.4	LQ	69.286	23.898	15.0	BER	15	0.6	1.1LBER		1. OLHEL
16													
2015	729	2321	21.4	LQ	69.567	24.471	15.0	BER	13	0.6	0.9LBER		0.9LHEL
OLD:	729	2321	21.5	LQ	69.556	24.495	15.0	BER	11	0.6	1. OLBER		0.9LHEL
17													
2015	812	1240	23.8	LQ	69.722	25.010	2.6	BER	12	0.7	1.1LBER		1.1LHEL
OLD :	812	1240	23.8	LQ	69.716	25.037	3.0	BER	9	0.7	0.9LBER		1.1LHEL
18													
2015	921	2127	13.2	LQ	69.074	24.190	12.9	BER	10	0.7	0.5LBER		0.7 LHEL
OLD:	921	2127	13.2	LQ	69.074	24.190	12.9	BER	10	0.7	0.5LBER		0.7 LHEL
19													
2015	923	1251	29.5	LQ	69.514	25.393	8.7	BER	8	0.9	0.6LBER		0.9LHEL
OLD :	923	1251	29.5	LQ	69.514	25.393	8.7	BER	8	0.9	0.6LBER		0.9LHEL
20													
2015	1012	1732	16.6	LQ	69.745	25.635	14.9	BER	5	0.7	0.6LBER		0.5 LHEL
OLD:	1012	1732	16.6	LQ	69.745	25.635	14.9	BER	5	0.7	0.6LBER		0.5 LHEL
21- New, probably an explosion													
2015	1013	2324	50.6	LP	67.702	20.745	0.0	BER	11	0.9	1.5LBER	2.1WBER	
OLD :	1013	2322	44.0	LP				BER	2				
22- New, probably an explosion													
2015	1013	2328	53.4	LP	67.832	20.373	0.0	BER	21	1.5	2.2LBER	2.4WBER	
OLD:	1013	2328	21.0	LP				BER	2				
23													
2016	115	0416	14.9	LQ	69.191	24.431	10.0	BER	10	0.5	1. OLBER		
OLD :	115	0416	14.7	LQ	69.167	24.503	10.2	BER	8	0.4	1. OLBER		
24- New, probably an explosion													
2016	115	0422	19.2	LP	66.447	14.494	0.0	BER	17	1.8	1. OLBER	1.7WBER	
OLD:	115	0422	16.7	LE	66.410	14.745	0.0 F	BER	6	0.4	1.0LBER		
25													
2016	726	1314	7.6	LQ	69.112	23.662	1.7	BER	11	0.7	0.6LBER		0.6LHEL
OLD :	726	1314	7.6	LQ	69.114	23.649	3.1	BER	9	0.7	0.6LBER		0.6LHEL
26													
2016	821	1818	21.4	L	68.815	23.373	0.0	BER	9	0.6	0.2LBER		0.4LHEL
OLD:	821	1818	21.4	L	68.816	23.364	0.0	BER	8	0.6	0.2LBER		0.4LHEL
27													
2016	822	0810	3.1	L	68.642	22.729	0.0	BER	9	0.8	0.2LBER		0.7LHEL
OLD :	822	0810	3.1	L	68.642	22.729	0.0	BER	9	0.8	0.2LBER		0.7LHEL
28													
2016	92	1250	10.6	LQ	69.093	22.615	12.2	BER	5	0.3	0.4LBER		
OLD:	92	1250	10.6	LQ	69.093	22.615	12.2	BER	5	0.3	0.4LBER		
29													
2016	919	1131	16.1	LQ	68.803	23.336	8.3	BER	9	0.5	0.2LBER		0.3LHEL
OLD :	919	1131	16.1	LQ	68.803	23.336	8.3	BER	9	0.5	0.2LBER		0.3LHEL

```
2016 10 5 2109 0.9 LQ 69.345 23.311 6.1 BER 7 0.8 0.6LBER
OLD: 10 5 2109 0.9 LQ 69.345 23.311 6.1 BER 7 0.8 0.6LBER
2016 10 8 0517 9.4 LQ 69.315 24.444 10.5 BER 12 0.6 0.8LBER
OLD: 10 8 0517 9.4 LQ 69.313 24.442 10.4 BER 11 0.6 0.8LBER
2016 1031 1032 6.2 LQ 69.459 22.283 2.4 BER 8 0.5 0.7LBER 0.7LHEL
OLD: 1031 1032 6.2 LQ 69.462 22.281 3.1 BER 7 0.5 0.6LBER 0.7LHEL
2016 11 2 0708 21.0 LQ 68.790 23.325 15.0 BER 6 0.4 0.2LBER 0.5LHEL
OLD: 11 2 0708 21.0 LQ 68.790 23.325 15.0 BER 6 0.4 0.2LBER 0.5LHEL
2016 1114 0601 47.2 LQ 69.276 23.719 3.4 BER 7 0.6 0.6LBER 0.6LHEL
OLD: 1114 0601 47.2 LQ 69.276 23.719 3.4 BER 7 0.6 0.6LBER O.6LHEL
2016 1226 0715 44.2 LQ 69.109 23.856 19.1 BER 5 0.1 0.1LBER 0.6LHEL
OLD: 1226 0715 44.2 LQ 69.109 23.855 19.1 BER 5 0.1 0.1LBER O.6LHEL
```

There are not many new readings from ScanARRAY. The 3 new events were not new but explosions in the NNSN data base (\#21, \#22 and \#24) (Figure 16).

Figure 16: The old (black points) and new locations (red points) of the 33 events from ScanARRAY integrated with NNSN data. New events circled with blue colour (Circles with black, green, red refers to event number 22, 21 and 24 respectively).

Discussion and conclusion

Important contributors to the fault generating mechanisms are believed to be stress associated with spreading of the Mohns, Knipovich and Nansen Ridges and viscous drag underneath the lithosphere (Olesen, 1988). Reverse faulting in response to horizontal NW-SE compression often observed. The thrust faulting is also consistent with the tectonic regime indicated by the other neotectonic faults in Sweden and Finland. (Bungum and Lindholm, 1996).

In Nordland, inversion of focal mechanisms of earthquakes indicates a coastperpendicular extensional stress regime with shallow earthquakes (Figure 17), which is directly opposite to what is found along the margin farther offshore (Hicks et al. 2000, Bungum et al. 2010). There are, however, also some strike-slip earthquakes here, with coastparallel compressions. This anomalous stress field (contrasting with the regional one) appears to be associated with a locally enhanced uplift pattern and a related flexuring mechanism. This may in turn be related to remaining glacioisostatic adjustments, but since very recent erosion has taken place in Nordland, the crust there may be strongly flexed, which also would result in coast-perpendicular extension. (Olesen et al., 2013)

Figure 17: Stress orientations, type of faulting and focal depths synthesised from earthquake focal mechanisms and in situ stress measurements (from Fjeldskaar et al., 2000). Areas with sparse data are indicated with question marks. Intensity of yellow indicates intensity of seismicity. Note that offshore depocentres generally coincide with areas of dominating compressional events whereas the coastal areas have a predominantly extensional regime. (Olesen et al., 2013)

According to Olesen (1988) and Muir Wood (1989), "Stuoragurra fault occur along a physiographic border. The mountainous area to the northwest has an average higher elevation than the area to the southeast. The ice was consequently thickest in the southeastern area. This would have involved more depression during the period of maximum glaciation and consequently a greater contribution to the subsequent postglacial stress regime. The differential loading of ice across a prestressed zone of weakness might consequently be sufficient to have caused reactivation of the old zone, and so produce a fault scarp."

The added readings for the 2 data sets did not seem to make a significant difference in the alignment of the epicenters in Finnmark. However, the new data provides one fault plane solution. The fault plane solution is not aligned with the fault which could indicate an uncertain solution. This situation is very common at the level of lower magnitudes (lower than 3).
New fault plane solution (see Figures 18,19) shows a normal fault pattern with the strike, dip and slip of $31040-79$, respectively.

Figure 18: Location of the event with fault plane solution.

Figure 19: Forces that effect fault plane solution.

Acknowledgemets

Lars Ottemöller and Jens Havskov read this report and made valuable suggestions.

References

- National Norwegian Seismic Network (NNSN) database http://nnsn.geo.uib.no/nnsn/\#/
- ScanARRAY temporary seismic stations database https://geofon.gfzpotsdam.de/waveform/archive/network.php?ncode=1G\&year=2012
- Dehls, J.F., Olesen, O., Olsen, L., Blikra J.F. L.H., (2000). Quaternary Science Reviews 19 ,1447-1460.
- Thybo, H., Balling, N., Maupin, V., Ritter, J., and Tilmann, F., (2012), ScanArray Core (1G 2012-2017): The ScanArray consortium, Other/Seismic Network
- Olesen, O. (1988): The Stuoragurra Fault, evidence of neotectonics in the Precambrian of Finnmark, northem Norway. Norsk Geologisk Tidsskrift, 68, 107-118.
- Bungum, H., Lindholm C., (1996) Tectonophysics 270, 15-28
- Olesen, O., Bungum, H., Dehls, J., Lindholm, C., Pascal, C. and Roberts, D. (2013). Neotectonics, seismicity and contemporary stress field in Norway mechanisms and implications. In Olsen, L., Fredin, O. and Olesen, O. (eds.) Quaternary Geology of Norway, Geological Survey of Norway Special Publication, 13, 145-174.

