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Summary  

Within the framework of workpackage 6 (WP06) of the RELIEF project, and as a part of 

workpackage 9 (WP09), seismic hazard assessment is performed using probabilistic and 

deterministic approaches. The final aim for these hazard studies is to implement the results in 

seismic risk assessment. In this report, seismic risk is calculated in terms of the estimated damage at 

the recently installed Istanbul Earthquake Early Warning and Rapid Response System (IEEWRRS) 

station sites.   

Ground motion is simulated for the Rapid Response station sites using hybrid techniques as 

documented in previous deliverables (see RELIEF UiB Deliverables 25 and 26). These results are 

then combined with the existing vulnerability functions for the building categories, and damage 

maps are produced showing the distribution of collapsed buildings based on a scenario earthquake 

(M=7.5) in the Marmara Sea.  

1. Introduction  

Istanbul, with a population exceeding 12 millions, is considered one of the world s mega cities 

exposed to significant earthquake hazard. The disastrous consequences of the two large earthquakes 

in Izmit and Düzce in 1999 have highlighted the need for careful analysis of seismic hazard 

including local site effects, although the earthquake hazard in this region has been a topic of 

considerable interest for a long time. Recent results from several studies (e.g. Atakan et al., 2002; 

Erdik et al., 2003a; Erdik et al., 2004; Pulido et al., 2004), as well as the results presented in 

RELIEF deliverables 18, 25 and 26, show significant seismic hazard and emphasize the importance 

of earthquake preparedness and risk mitigation in the Istanbul metropolitan area and its rapidly 

growing surroundings.   

As a response to this growing awareness of seismic hazard and risk in Istanbul, there are a number 

of earthquake risk mitigation efforts that are being implemented. One of these initiatives is the 

preparation of the Earthquake Master Plan for Istanbul (IBB, 2003). As a results of this a number of 

mitigation plans are being implemented such as the pilot microzonation study for the Zeytinburnu 

district, strengthtening of the school and hospital buildings, etc. Another important initative is the 

installation of the Istanbul Earthquake Early Warning and Rapid Response System (IEEWRRS) 

(Erdik et al., 2003b) by the Bogazici University, Kandilli Observatory and the Earthquake Research 
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Institute (KOERI). The system, which consists of 100 strong motion and ten broad-band stations, 

aims to provide rapid shake-maps and maps with expected damage distributions in Istanbul after 

each significant earthquake.  

The main objective of the present study is to contribute to the detailed understanding of the seismic 

hazard in Istanbul and its consequences. The work starts with providing realistic ground motion 

simulations based on a future scenario earthquake in the Marmara Sea utilizing the recorded ground 

motion at the Rapid Response System (RRS is part of the IERREWS) stations in Istanbul. Two 

recent earthquakes that occurred on May 16, 2004 (Mw=4.2) and on Sept. 29, 2004 (Mw=4.1), 

recorded at the RRS stations, are used as Green s functions assuming that they represent parts of the 

target fault. Final goal of the present study is to demonstrate the effects of using a realistic scenario 

input from ground motion simulations to produce shake-maps and damage estimates.  

2. Earthquake preparedness and risk mitigation strategies in Istanbul  

There are a number of ongoing efforts in Istanbul aiming to improve earthquake prearedness and 

risk mitigation. In the following, two recent examples are explained in some detail. The first one of 

these is a joint effort on the Earthquake Master Plan for Istanbul (IBB, 2003) by the Istanbul 

Metropolitan Municipality and the four major Universities in Turkey. Three of these the Bogazici 

University (BU), Yildiz Technical University (YTU), and Istanbul Technical University (ITU) are 

located in Istanbul and the fourth, the Middle East Technical University (METU) is located in 

Ankara. The second is the recently installed Istanbul Earthquake Early Warning and Rapid 

Response System - IEEWRRS (Erdik et al., 2003b).  

2.1. The Earthquake Master Plan for Istanbul  

The Earthquake Master Plan for Istanbul (IBB, 2003) is a comprehensive study that addresses the 

earthquake hazard and risk in Istanbul and possible mitigation measures that can be considered. The 

analyses are conducted by two different teams (BU-YTU and ITU-METU) and the resuts are 

compiled in a detailed report. In the report, a Current Situation analysis is conducted that 

summarizes previous studies and provides a comprehensive summary of the risk to the population, 

buildings, transportation systems, and lifelines as well as the potential impact on essential facilities, 

services and emergency response. Seismic assessment of the existing inventory of buildings, their 

evaluation and strengthening are discussed. Several methods are proposed for the evaluation of the 

buildings. A discussion is provided related to legal issues pertaining to collection of information on 



REL.I.E.F.  Partner 6   Deliverable no. 27, January 2006 

_____________________________________________________________________________ 5 
Partner 6 

the building characteristics. In a separate chapter, the report discusses issues related to the planning, 

legal issues, administration and finance. The report provides essentially two approaches for 

integration of risk reduction in urban planning and urban renovation of Istanbul. It discusses the 

legal and institutional arrangements and proposes new organizational structures to facilitate the 

implementation of the master plan. It also discusses various financial instruments for funding. 

Specific hardware and software, data structures and the related information management are also 

outlined in the report. The educational and social issues are considered and various earthquake 

preparedness programs, with an emphasis on community education and social networking, are 

proposed. Finally the report also consists of a disaster management and suggests a framework for 

emergency management for Turkey that provides a role to the provincial and local governments.   

2.2. Istanbul Earthquake Early Warning System and Rapid Response System (IEEWRRS)   

Bogazici University, Kandilli Observatory and Earthquake Research Institute (KOERI) in 

collaboration with the Governorate of Istanbul, First Army Headquarters and Istanbul Metropolitan 

Municipality, have recently installed the Istanbul Earthquake Early Warning and the Rapid 

Response System (IEEWRRS) (Erdik et al., 2003b). The system aims to provide reliable 

information in case of a significant earthquake in the region. The Rapid Response System (RRS) 

part of the IEEWRRS is composed of 100 strong motion stations (Figure 2.2.1) and is designed to 

provide shake, damage and casualty maps immediately after an earthquake for rapid response 

purposes. In addition, there are ten broad-band stations installed mainly in the eastern part of the 

Marmara Sea region, which constitute the Early Warning System (EWS) part of the IEEWRRS. 

The main aim of the EWS is to provide rapid information about the earthquake source parameters 

and issue early warning to relevant authorities.  

Since its installation, the RRS has recorded two significant earthquakes on May 16, 2004 and 

September 29, 2004 with magnitudes (Mw) 4.2 and 4.1, respectively. Both earthquakes are located 

along the North Boundary fault (Figure 2.2.2), which is a releasing bend of the North Anatolian 

Fault Zone (NAFZ) in the Marmara Sea. The source parameters of these earthquakes are given in 

Table 1, together with other significant (M>4) earthquakes that have occurred since 1999.  

Seismograms from the May 16, 2004 earthquake as recorded by the RRS stations are shown in 

Figure 2.2.3. The focal mechanism of the May 16, 2004 earthquake (Event #6 in Table 1) has been 

determined by a moment tensor solution with reasonable fit at eight station records (Figure 2.2.3). 

The resulting solution indicates an oblique-normal focal mechanism, with a second nodal plane that 

agrees well with the strike orientation, dip and the expected slip of the North Boundary fault. The 
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location of this event, however, falls close to the intersection with the Hersek segment of the NAFZ, 

where the dominant mechanism expected is pure strike-slip (right-lateral). The oblique-normal 

faulting indicates clearly that the earthquake have occurred along the SE-edge of the North 

Boundary fault and not on the offshore Westward extension of the Hersek segment of the NAFZ.   

Table 1: Source parameters of significant earthquakes in the Marmara Sea since 1999 (data from 
KOERI-National Earthquake Observation Center UDIM). Note that only events # 6 and 7 are used 
in the study since these are the only significant earthquakes recorded by the IERREWS since its 
installation in 2003.  

Location Focal mechanism Event 
# 

Date Time 
(UTC) Latitude 

(deg. N) 
Longitude 

(deg. E) 

Depth 
(km) 

Mag. 
Mw V Ø 

  

1 20.09.1999 21:27:59 40.69 27.58 16.0 4.8 m 245 40 166 
2a 20.10.1999 23:08:21 40.79 29.00 10.6 4.4 m 293 73 164 
2b 20.10.1999 23:08:21 40.79 29.00 8.0 4.9 f 32 71 16 
3 24.03.2001 13:07:39 40.84 28.83 11.0 3.7 m 106 87 -160 
4 28.02.2002 08:37:51 40.824 28.121 11.5 4.8 f 072 60 162 
5 23.03.2002 02:36:10 40.844 27.852 13.8 4.8 f 274 60 -165 

f 128 80 -135 6 16.05.2004 03:30:48 40.712 29.340 13.0 4.2 
m 151 54 -152 

7a 29.09.2004 17:42:07 40.784 29.036 14.0 4.1     
7b 29.09.2004 17:42:07 40.810 29.050 10.0  f 159 22 0 

Mw: Moment magnitude 
V: Version (f: first motion polarities; m: moment tensor solution) 
Ø: Strike angle in degrees 
: Dip angle in degrees 
: Slip angle in degrees 

1, 2b, 3: Pinar et al., (2003) 
2a: Örgülü et al., (2001) 
4, 5, 6, 7a: KOERI-UDIM 
7b: This study  

The location of the second event (Event #7 in Table 2) on September 29, 2004, is definitely on the 

North Boundary fault as it falls in the area just south of the Princess Islands (Figure 2.2.2). In this 

case the trials with the moment tensor inversion did not give satisfactory results. However, we 

believe that the focal mechanism of this event is probably very similar to the May 16, 2004 

earthquake because of its location. Further evidence for this comes from a recent OBS survey 

conducted in the Marmara Sea (Sato et al., 2004). The composite focal mechanism obtained for the 

small earthquakes that occurred in the same area agrees well with the mechanism obtained for the 

May 16, 2004 event. In the table above the focal mechanism for the Sept. 29 event is included as it 

was reported by the KOERI-UDIM.  

The recorded ground motion distributions from these two earthquakes are shown in Figure 2.2.4. 

These two events, although small in size, are probably representative for the SE-part of the North 

Boundary fault and can be used for further ground motion simulations as Green s functions.    
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Along the same segment of the NAFZ (North Boundary fault), a previous earthquake with a 

surface-wave magnitude of 6.4 occurred on September 18, 1963 (McKenzie, 1972; Taymaz et al., 

1991). The location of this event is not very reliable due to the lack of dense instrumental networks 

in the region at the time. However, based on the macroseismic observations and the available 

instrumental records, the location of the event is probably at the SE-part of the North Boundary 

fault associated with the area bounded by the two events that occurred in 2004 (Events # 6 and #7).  

3. Seismic hazard analysis for IEEWRRS  

Seismic hazard analysis for the IEEWRRS is conducted using the hybrid ground motion simulation 

methodology which is explained in detail in RELIEF Deliverables 25 and 26.  In the following, 

ground motion simulation results are presented for the bedrock conditions using a similar input as 

the one used in the paper by Pulido et al., (2004). In addition, there is an ongoing effort to assess the 

site effects for each Rapid Response (RRS) station site. The preliminary results from this is given 

briefly, which is based mainly on the work conducted by colleagues at the Kandilli Observatory and 

Earthquake Research Institute (KOERI) of Bogazici University, Istanbul. Once these studies on the 

site effects assessment on all RRS station sites are finalized, the ground motion simulations will be 

extended accounting also for the site effects. However, this is outside the scope of the RELIEF 

Project. The prupose of this section is to demonstrate the potential seismic risk in Istanbul by 

providing a set of ground motion simulation results which are used as input to the risk calculations. 

These results are then combined with the vulnerability functions established for different building 

categories in estimating the damage. The damage is expressed in terms of collapsed buildings.   

3.1. Ground motion simulations for the bedrock conditions  

Ground motion simulations are performed for all the RRS stations assuming bedrock conditions 

using the methodology applied in Pulido et al. (2004). Broadband frequency (0.1 

 

10 Hz) bedrock 

strong ground motion simulations are based on a fault rupture scenario and a source asperity model. 

The technique combines a deterministic simulation of seismic wave propagation at low frequencies 

with a semi-stochastic procedure for the high frequencies. To model the high frequencies, we 

applied a frequency-dependent radiation pattern model, which efficiently removes the effective 

dependence of the pattern coefficient on the azimuth and take-off angle as the frequency increases.   

The idea is to evaluate the strong ground motion radiated from a finite fault, multi-asperity source 

model. The total ground motion radiated at each asperity is obtained by adding the low-frequency 
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and high-frequency waveforms in time domain. Details of the simulation technique are explained in 

Pulido and Kubo (2004) and Pulido et al., (2004).   

For the low-frequency (0.1 to 1 Hz) ground motion, asperities are subdivided into several point 

sources, and the time delayed ground motions from them is added, assuming a random or a constant 

rupture velocity. The seismogram from each point source is obtained numerically by the discrete 

wave number method of Bouchon (1981), which computes wave propagation in a flat-layered 

velocity structure, for a particular focal mechanism and source time function.  

The high-frequency (1 to 10 Hz) ground motion is again calculated for finite asperities consisting of 

several subfaults. The ground motion from each subfault is obtained using a technique based on the 

stochastic approach of Boore (1983), summation being performed by the empirical Green s function 

method (Irikura, 1986), which is very efficient for radiation at high frequencies from finite faults. 

Boore s (1983) procedure was modified by Pulido and Kubo (2004), by introducing a frequency 

dependent radiation pattern into the ground motion acceleration spectrum.  

The earthquake scenario considered consists of the rupture of the closest segments of the North 

Anatolian Fault System to the city of Istanbul. Our scenario earthquake involves the rupture of the 

entire North Anatolian Fault beneath the Sea of Marmara, namely the combined rupture of the 

Central Marmara Fault and North Boundary Fault segments. The fault rupture scenario is based on 

two asperities, one located within the Central Marmara Fault on the easternmost section before the 

bending point, and the other located within the continuation at the western section of the North 

Boundary fault. The fault and asperity parameters for the scenario were determined from empirical 

scalings and from results of kinematic and dynamic models of fault rupture. This model scenario 

corresponds roughly to the scenario 1a at Pulido et al. (2004), with minor modifications. The 

rupture initiation point is assumed to be at the westernmost end of the Central Marmara fault and is 

critical for the distribution of the ground motion in southern Istanbul with its dense population, 

especially taking into account the directivity effects. 
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The broad-band ground motions at RRS station locations are calculated in time series and spectra. 

The results are presented in color-shaded contour maps showing the ground motion distribution at 

the RRS station locations corresponding to peak ground accelerations and peak ground velocities 

(Figure 3.1.1). The distribution of the PGV values (cm/sec) gave somewhat better representation of 

the ground motion distribution than the PGA values (in cm/sec2), which suffer probably from 

interpolation problems. However, the ground motion distribution in general follows the expected 

pattern similar to the distribution obtained by the computations on a regular grid (Pulido et al., 

2004). The simulated ground motions indicate large values of acceleration response spectra at long 

periods, which could be critical for building damage at Istanbul during an actual earthquake.  

3.2. Ground motion simulation results for the Rapid Response Station sites  

We have performed also ground motion simulations using a scenario based on the rupture along the 

North Boundary Fault (NBF) alone. In this scenario, the recordings of the May 16, 2004 (Mw=4.2) 

event are used as an Empirical Green s Functions (EGF) for an asperity located close to the 

easternmost end of the fault. The magnitude of the scenario event is 7.1 based on the Sommerville 

et al. (1999) relation using 45 x 20 km fault area. The length of the NBF is well constrained by the 

bathymetry of the northern escarpment of the Cinarcik basin, however, the depth of the seismogenic 

zone is uncertain. The assumed depth of 20 km is based on the hypocentral depths of the small and 

moderate size earthquakes that occur in the Marmara Sea region (e.g. Gürbüz et al., 2000; Pinar et 

al., 2003; Sato et al., 2004).  

Table 2: Fault and asperity parameters of the scenario earthquake along the North Boundary Fault (NBF). 
The three possible solutions for the geometry and mechanism of NBF is given together with the size of the 
asperities and the moment used in the Empirical Green s Function (EGF).    

Fault dimensions 
(in km) 

Fault geometry and 
mechanism 

Fault 
Parameters  MO   

(Nm)   

 

(bars) 

# 
sub-

faults Length Width  
MW 

Ø 

  

Asperity 
depth (in 

km) 
Entire NBF (a) 6.183 x 1019  369 45 20 7.1 106 64 -146  

Version (b)       110 90 -135  
Version (c)      5.2 112 88 170  
Asperity # 2 2.473 x 1019 100 225 15 15     3 

Background # 4 3.710 x 1019 50 144        
EGF 2.076 x 1015     4.2     

Mw: Moment magnitude 
MO : Seismic moment     

: Stress-drop 
Focal mechanism versions: (a) Composite solution from Sato et al. (2004) (b) solution used in the previous simulations 
(Pulido et al., 2004) (c) Solution for the Aug.17, 1999 Mw=5.2 earthquake (Pinar et al., 2003)  

Ø: Strike angle in degrees 
: Dip angle in degrees 
: Slip angle in degrees
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The ground motion simulation parameters used in this scenario are given in Table 2.  In this 

scenario, we assume an asperity along the westernmost end of the fault located 3 km from the 

surface. The dimensions of the asperity are adjusted using 0.25 for the ratio of the asperity/fault 

area, which corresponds to 15x15 km2. This value is similar to the global average of 0.22 

(Somerville et al., 1999). The focal mechanism of the May 16, 2004 earthquake (Table 1) is 

compatible with the tectonics of the area where the regional stress-tensor with 1 oriented NW-SE 

and 3 oriented NE-SW (Pinar et al., 2003) produces oblique-normal faulting with a significant 

right-lateral component along the NBF. Regarding the geometry of the NBF at depth however, 

Okay et al. (2000), have proposed a southwestward dipping normal fault following the escarpment 

morphology, which at depth becomes near vertical. The proposed change in the dip of the fault is 

suggested to be around 3-4 km depth. The focal mechanism of a number of events along the NBF 

suggest pure strike-slip faulting, which is compatible with Okay et al. s (2000) interpretation. More 

recently however, Sato et al., (2004) have computed a composite focal mechanism based on OBS 

data using moment tensor inversion, and found an oblique normal faulting with a significant right-

lateral strike-slip component. Both these solutions have similar hypocentral depths around 10 km. 

In our simulations we have used the latter solution from Sato et al., (2004) for simplicity. 

Introducing a changing dip angle in the computations would produce additional uncertainties and at 

this stage we feel that our knowledge of the fault geometry at depth is not sufficient to resolve this.  

Two examples of simulated seismograms and spectra are shown in Figures 3.2.1 and 3.2.2. In 

general the level of ground motions are slightly lower when compared to the results presented in the 

previous section where an earthquake scenario using a simultaneous rupture of the NBF and CMF 

segments.   

3.2.1. Site effects for the IEEWRRS stations  

Previous studies of local site effects, following the 1999 Izmit and Düzce earthquakes, have focused 

mainly on the Avcilar district of western Istanbul (e.g. Özel et al., 2002; Tezcan et al., 2002), and 

on the city of Adapazari in the east (e.g. Bakir et al., 2002; Komazawa et al., 2002; Sancio et al., 

2002; Beyen and Erdik 2004 and Ansal et al., 2004), which experienced significant damage mainly 

due to site effects. In both areas, the presence of soft sediments in basin structures has caused strong 

amplifications of earthquake ground motions during past earthquakes.  

As for the city of Istanbul, possible effects of local geological variations have been studied in 

several microzonation studies (e.g. JICA, 2004; Eyidogan et al., 2000; Ansal et al., 2004). The 
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geological map showing the distribution of main units indicates that there are significant differences 

in both the age and the composition of these units (Figure 3.2.3). Birgören et al. (2004) found 

amplification levels up to a factor of 7 for some geological formations at 1 and 3 Hz frequencies, 

based on spectral ratios of records from a M=4.2 earthquake (Figure 3.2.4 and 3.2.5). More 

recently, Sørensen et al. (in review), have studied the local site effects at Ataköy using a 3-D FD-

scheme. Their results indicate that there exist clear amplifications along the alluvial and fluvial 

deposits associated with the N-S oriented river systems. They found these amplifications to be at 

frequencies around 3-5 Hz and in addition, they infer amplifications (though less significant) 

around 1 Hz which are attributed to the response of the Bakirköy and Güngören formations.  

In order to estimate the site effects at all RRS station sites, a comprehensive microtremor survey 

was conducted (Özel et al., 2005). The results from this study are shown in Figures 3.2.6 and 3.2.7. 

In general, clear-peaks

 

(following the definition suggested by Bard et al., 2004)  observed on 

some of the sites agree with the standard spectral ratios observed on the 16 May 2004 (Mw=4.2) 

earthquake record. The peaks observed around 1.0 

 

1.5 Hz are probably associated with the 

Bakirköy formation. This is in agreement with results that were obtained in previous studies (e.g. 

Eyidogan et al., 2000; Sørensen et al., in review).  

4. Seismic risk  

In order to provide an overview of the possible damage due to a scenario earthquake, the ground 

motion simulations are computed for the IEEWRRS station sites and then converted to response 

spectra. The scenario used is the one described in section 3.2, where we simulate ground motions 

due to a M=7.1 earthquake along the NBF using EGF. Figures 4.1 

 

4.4 show the spatial 

distribution of PGA (Figure 4.1.1) and response spectral displacements in three frequency bands for 

1-3 Hz (Figure 4.2), 3-5 Hz (Figure 4.3) and f>5 Hz (Figure 4.4). These results are used as the 

hazard input to risk computations, by combining with the vulnerability functions established for 

different building categories. The chosen frequency ranges correspond roughly to the most common 

height categories of building stock in Istanbul (i.e. 1-4 floors low-rise , 5-8 floors mid-rise

 

and 

>8 floors high-rise

 

buildings). The vulnerability functions and the methods of damage 

computations based on rectangular cells are developed by KOERI. In this report we applied the 

same building inventory and methods for estimating the vulnerability functions. The results are 

presented in terms of collapsed buildings in each cell.  
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4.1. Damage maps for Istanbul based on ground motion simulations  

Based on the ground motion simulations, a damage distribution map is produced using the already 

established IEEWRRS procedures. The results are presented in terms of collapsed buildings in a 

grid of cells (Figure 4.1.1). The distribution clearly shows that there is a significant risk posed on 

several locations within the metropolitan area of Istanbul. The highest values are obtained in 

locations where both hazard and the vulnerability functions are high. Examples are locations such 

as Fatih and Zeytinburnu, which have dense building structure and relatively high vulnerability 

functions. In genral it can be seen that the total number of collapsed buildings is much larger in the 

SW part of the city on the European side when compared to the SE part on the Asian side. Clearly 

the damage is gradually reduced when moving towards north.    

5. Concluding remarks  

Results presented in this report should be considered as preliminary and are meant as a pilot study 

for demonstrating the effects of ground motion simulations on damage. The intention here is to 

establish routines than can be used in more comprehensive risk analysis for the Istanbul area in the 

future. These preliminary results show clearly that the strong ground motion simulations based on 

realistic earthquake scenarios, when combined with vulnerability functions provide a good estimate 

of the expected level of risk in Istanbul. These results are important with regard to the ongoing 

efforts of risk mitigation in the metropolitan area in terms of strengthtening the critical buildings 

such as hospitals and schools as well as planning activities for future settlements in Istanbul.   
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Figure 2.2.1. Istanbul Earthquake Rapid 
Response and Early Warning System 
(IERREWS) station locations. White triangles 
are the Rapid Response System (RRS) stations 
(From KOERI).   
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Figure 2.2.2. Locations and focal mechanisms of the 
two earthquakes recorded by the IEEWRRS are shown 
together with the approximate location of the North 
Boundary Fault (NBF). White triangles are the Rapid 
Response System (RRS) stations. Early Warning 
stations are not shown for simplicity (From Birgören 
et al., 2004).  
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Figure 2.2.3.  Accelerograms as recorded by the RRS 
stations for the earthquake of May 16, 2004 (MW=4.2). 
The hypocenter of the event is shown as a red star 
(from KEORI, UDIM). The focal mechanism indicates 
an oblique-normal slip which is compatible with the 
expected motion of the North Boundary fault (From 
Birgören et al., 2004).  
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Figure 2.2.4. The distribution of PGA as recorded at 
the RRS stations for the May 16, 2004 (top) and Sept. 
29, 2004 (bottom) earthquakes. The focal mechanism 
shown for the May 16, 2004 event indicates an 
oblique-normal motion compatible with the geometry 
of the North Boundary fault. (From Birgören et al., 
2004)  
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Figure 3.1.1. Ground motion simulation results 
performed for the RRS station sites. The results are 
shown in (top) peak ground acceleration (PGA) and 
(bottom) peak ground velocity (PGV).  
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Figure 3.2.1. An example of the simulated ground 
motions at an RRS station shown in time-series 
and spectra. Numbers above the waveform give the 
peak values.  
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Figure 3.2.2. An example of the simulated ground 
motions at an RRS station shown in time-series 
and spectra. Numbers above the waveform give the 
peak values.  
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Figure 3.2.3. General geology of the Istanbul region. 
The legend for the geological units is shown in a 
separate figure (see next page).  
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Figure 3.2.3 (continued). The legend for the 
Geologial map shown in the previous figure.  
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Figure 3.2.4. Predominant frequencies of the RRS 
sites based on the H/V spectral ratios of the May 16, 
2004 and Sept. 29, 2004 earthquake records. Soil 
classification is based on the NEHRP (1997). Note 
that the soil classes D, E and F show lower 
frequencies (From Birgören et al., 2004).   
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Figure 3.2.5. Map of relative amplification factors for 
the 1 Hz peaks. Maximum amplifications reach a 
factor of 5 at the European sites in the NEHRP (1997) 
soil classes C, D and E. (From Birgören et al., 2004)   
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Figure 3.2.6. Contour map of the predominant 
frequencies as obtained from the H/V spectral ratios of 
the microtremor measurements. (from Özel et al., 
2005).  
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Figure 3.2.7. The soil thickness map based on the 
empirical relations by Ibs-von Seht and Wohlenberg 
(1999). (from Özel et al., 2005). 
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Figure 4.1.

 

Distribution of the displacement  
spectra for peak ground accelerations (PGA).   
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Figure 4.2.

 

Distribution of the displacement  
spectra for the frequency range 1-3 Hz (building 
category low-rise  1-4 floors).  
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Figure 4.3. Distribution of the displacement  
spectra for the frequency range 3-5 Hz. Building 
category mid-rise  5-8 floors.  
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Figure 4.4.

 

Distribution of the displacement  
spectra for f>5 Hz. Building category high-rise

 

>8 floors.  
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Figure 4.1.1. The spatial disrtibution of earthquake 
damage in terms of collapsed buildings.   
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