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Q and spectral analysis in SEISAN 

 
by 
 
 

Jens Havskov 
 
 

The purpose of this note is to give the general background needed for understanding 
how Q is used and determined as well as some of the parameters used in spectral analysis. In 
addition references will be given to which SEISAN programs can be used for the different 
methods. 
 
1.0  Attenuation 

 
 
The amplitude attenuation caused by Q can be described as 
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where A0 is the initial amplitude, A(t) the amplitude after the wave has traveled time t, f is the 
frequency and Q(f) is the in general frequency dependent Q. Alternatively (1.1) is written 
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where r is the hypocentral distance and v the average velocity along the path. For longer 
paths, the average velocity might change with hypocentral distance so is easier (and more 
correct) to use the travel time, which usually is a precisely known parameter for a given 
location and origin time.  

If Q is constant along the path, (1.1) is all we need. If however Q varies along the path, 
the effect of the different parts of the path must be accounted for. For a two layer case (Figure 
1), we get 
 
 

                           
 
Figure 1  A ray passing two layers with different Q 
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For a continuous changing Q we can write 
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where  t*  is defined as 
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and the integration is along the whole path, T is the total travel time along the path and Qav is 
average Q along the path. For teleseismic body waves, t* is often nearly constant for different 
travel times, due to increasing Q with depth, and independent of frequency (below 1 Hz) and 
therefore no frequency dependence is indicated. For ray paths used in local seismology, Q is 
most often considered constant along the ray path, although some increase of Q with depth 
has been observed. However, this turns out to be an over simplification since the near surface 
layers (1-3 km) generally have a much lower Q than the rest of the path and tends to filter out 
high frequency energy (f > 10-20 Hz). Thus for local crustal studies, we must at least separate 
the attenuation in two terms (near surface and the rest) as in (1.2) with a constant Q in each 
layer.  It turns out that the near surface attenuation is nearly frequency independent, limited to 
the very near surface layers (similar travel time) and the effect can therefore be quantified 
with t* : 
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In general t* iV�XVHG�IRU�WHOHVHLVPLF�UD\�SDWKV�VR�LQ�RUGHU�WR�DYRLG�FRQIXVLRQ��ZH�ZLOO�XVH�  W* 
instead for near surface attenuation. Since  t1 >> t2,  we will replace t1 with t and Q1 with Q 
and the general expression for the amplitude decay to use in local studies is then 
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It should be noted, that the near surface attenuation is not the only phenomena, which can 
affect the amplitude at a given site. The so-called site amplification if often observed, 
whereby amplitudes at certain frequencies are enhanced (rarely also reduced) due to local soil 
structure and/or topographic effects. It is rarely observed at good rock sites while common on 
sediment sites, and is most pronounced on horizontal components. This effect is hard to 
distinguisK�IURP�WKH�HIIHFW�RI� �DW�LQGLYLGXDO�IUHTXHQFLHV�DQG�LW�LV�DGYLVHG�WR�XVH�YHUWLFDO�
component recordings at rock sites if possible for Q-determination. 
The soil amplification can be determined with SEISAN using the SPEC program. 
 
  



 3

2.0 Determination of Q using one station 
 

,W�ZLOO�EH�DVVXPHG�WKDW� �LV�IUHTXHQF\�LQGHSHQGHQW�DQG�4�LV�IUHTXHQF\�GHSHQGHQW�RQ�

the form 
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ZKHUH� �XVXDOO\�LV�LQ�WKH�UDQJH�����WR������7DNLQJ�WKH�QDWXUDO�ORJDULWKP�RI��������ZH�JHW 
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We will assume that the signals are generated by earthquakes following the Brune 

source model (Brune, 1970) and therefore have a displacement source spectrum S of the form 
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where K is a constant which is proportional to the seismic moment and f0 is called the corner 
frequency. The spectrum is constant for f < f0 and decays as f2 for f > f0. For f = f0 the 
amplitude has decayed to 0.5 relative to the flat level or on a log-log scale to the –3db point 
(0.7).   
 
 
'HWHUPLQH�  
 

For a constant t, we can consider (2.3) to represent the spectral content of a signal 
having travel the time t. If the signal is generated by an earthquake and we only use the part of 
the spectrum where f0 > f, plotting ln(A(f,t)) vs. f, will make a straight line with slope of -
� �W�4���LI�4�LV�IUHTXHQF\�LQGHSHQGHQW��,I��W�4�LV�VPDOO��WKH�VORSH�ZLOO�EH�GLUHFWO\�SURSRUWLRQDO�

WR� ��7KXV�WR�UHOLDEOH�GHWHUPLQH� �LQ�WKLV�ZD\��ZLWKRXW�NQRZLQJ�4��VKRUW�K\SRFHQWUDO�GLVWDQFHV�

should be used. ,I�4�I��LV�NQRZQ��WKH�VSHFWUXP�FDQ�ILUVW�EH�FRUUHFWHG�IRU�4�I���DQG� �
GHWHUPLQHG�GLUHFWO\��$�JRRG�WHVW�RI�WKH�UHVXOW�LV�WKHUHIRUH�WR�GHWHUPLQH� �XVLQJ�GLIIHUHQW�

GLVWDQFHV��,I�4�I��LV�FRUUHFW��WKH�YDOXH�RI� �REWDLQHG�VKRXOG�EH�WKH�VDPH� 
$�W\SLFDO�YDOXH�RI�  is 0.05. With a travel time of 1 sec, that corresponds to a Q of 20. 
3URJUDP�63(&��FDQ�GHWHUPLQHG� �IRU�LQGLYLGXDO�HYHQWV�E\�ILWWLQJ�������WR�D�ORJ-lin spectrum 
DQG�DOVR�IRU�D�VHULHV�RI�HYHQWV�DQG�GHWHUPLQLQJ�DYHUDJH� -values. 
 
 
Q and �IURP�VSHFWUDO�PRGHling 
 

The complete shape of the of the observed spectrum is (1.6) multiplied by (2.3) giving 
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Given an observed spectrum, (2.4) can be modeled to determine f0�� ��40 �DQG� �7KLV�LV�QRW�

always so easy, and is best done if at least one of the parameters is known. The modeling can 
EH�GRQH�ZLWK�SURJUDP�08/3/7��1RWH�WKDW�LI�  ���WKH�4-term has no influence on the spectral 
shape since (2.3) becomes 
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$Q� -value near 1.0 is quite common, particularly for coda Q values (see below). 
 

If the corner frequency is high and if the effect of Q(f) is not dominating the spectrum, 
the near surface attenuation will dominate the spectral decay and the real corner frequency 
cannot be seen, only the apparent corner created by the near surface attenuation. If we define 
the corner frequency f   the frequency where the spectral level has reached 0.5 as a result of 
the effect of near surface attenuation, then f can be calculated as 
 

5.0=− κπκfe    giving 
κκ
223.0=f       (2.6) 

 
,I��H�J��  �������I =9 Hz, and it will not be possible to obtain the true source corner frequency 
for small earthquakes (ML��������ZLWKRXW�FRUUHFWLRQ�IRU� ��,W�PLJKW�QRW�EH�SRVVLEOH�WR�FRUUHFW�

IRU� ��LI�WKH�VLJQDO�WR�QRLVH�UDWLR�RI�WKH�KLJK�IUHTXHQF\�SDUW�RI�WKH�VSHFWUXP�LV�ORZ�GXH�WR�WKH�

effect of ���7KXV�LQ�RUGHU�WR�JHW�D�UHOLDEOH�VRXUFH�FRUQHU�IUHTXHQF\�IRU�VPDOO�HDUWKTXDNHV�� �LV�
a very critical parameter. 
 

A similar effect will be obtained with Q, however since Q normally is frequency 
dependent, the effect will not be as dramatic, more like a flattening of the spectrum. And, as 
REVHUYHG�DERYH��LI� �LV�QHDU����QR�FKDQJH�LQ�VSHFWUDO�VKDSH�RFFXUV��:H�FDQ�VLPLODUO\�GHILQH�D�

fQ  as f  and get 
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For Norway, Q=440f0.7 which gives  fQ=95 Hz if t=25 s. In this case, the Q-correction is not 
critical for determination of f0. 

For small (M= -1 to 1) very local earthquakes at Deception Island, Q=59f0.4 and travel time is 
2s giving fQ=13 Hz,  so obviously the q-correction is critical to get the correct corner 
frequency. 
 
 
 
Coda Q 
 

Coda waves are thought to decrease in amplitude only due to attenuation (1.6) and 
geometrical spreading and (1.6) can then be written 
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ZKHUH� �LV���IRU�ERG\�ZDYHV�DQG�����IRU�VXUIDFH�ZDYHV��8VXDOO\�LW�LV�DVVXPHG�WKDW�FRGD�ZDYHV�

are body waves. Taking the logarithm, (2.8) can be written 
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Plotting the envelope of ln($�I�W��� OQ�W��DV�D�IXQFWLRQ�RI�W�IRU�D�JLYHQ�IUHTXHQF\��E\�EDQG�SDVV�

filtering the signal), gives a straight line with slope – I�4�I��DQG�4�I��FDQ�EH�GHWHUPLQHG���$V�

it can be seen, the Q-GHWHUPLQDWLRQ�LV�QRW�DIIHFWHG�E\� �RU�VRLO�DPSOLILFDWLRQ��&RGD�4�FDn be 
determined with program CODAQ. 
 
 
Q of S and coda waves 
 
From (2.8), the coda wave spectrum at time tc can be written 
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where Ac0 is a factor depending on the efficiency of coda wave generation. It is assumed that 
the frequency content in the coda wave spectrum is the same as the S-wave source spectrum. 
The corresponding S-wave spectrum is 
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where ts is the S-wave travel time. We assume that the near surface attenuation and 
geometrical spreading is the same for coda waves and S-waves. The natural logarithm 
of the ratio of the two spectra is then 
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If Q is assumed frequency independent, and the spectral ratio is plotted as a function of f, we 
get a linear relationship with a slope of 
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Alternatively, we can write (2.13) as 
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and the slope is 

s

s

Q
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Since the travel times are known, either of the Q-values can be determined from the other. If 
Qc is assumed frequency dependent, a constant Qs can still be determined from the slope of 
the straight line using (2.15), similarly if Qs is known and Qc is unknown. 

If Q(f) is to be determined, data from several stations and/or events are needed. 
Rearranging (2.15), we get 
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If, at one particular frequency, we have several observations at different ts, it is seen from 
equation (2.17), that plotting the left hand side of (2.17) versus ts, we get a linear relationship 
and Qs(f) can be determined from the slope.  

All of the above methods will work without knowing the instrument calibration 
function, since spectral ratios form the same trace is used. There will be no dependence on 
focal mechanism if we assume that the spectral source content in S and coda waves are 
affected equally by the fault plane solution.   
 
 
3.0 Two station methods for Q-determination 
 

The principle is that if the waves are recorded at two different stations at different 
distances, the difference in amplitude, at a given frequency, is due to attenuation and 
geometrical spreading like in the coda Q case. We can write  
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for the amplitudes recorded at station 1 and 2 respectively. If we observe the amplitudes at 
VSHFLILF�IUHTXHQFLHV�DQG�WUDYHO�WLPHV��DVVXPH�D�JHRPHWULFDO�VSUHDGLQJ��DVVXPH�WKDW� �LV�

constant, disregard the effect of focal mechanism, then the amplitude ratio at a given 
frequency at the two stations can be used to calculate Q(f). 
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As it can be seen, Q(f) is the only unknown in (3.3). This method is critically 

dependent on the absolute amplitudes so, if instrument response is not the same at both 
stations, the amplitudes must be corrected for instrument response. Soil amplification can also 
VHULRXVO\�DIIHFW�WKH�UHVXOWV�IRU�LQGLYLGXDO�YDOXHV�RI�4�I����,Q�D�JLYHQ�UHJLRQ�� �LV�RIWHQ�FRQVWDQW�

and the effect of the source radiation can be eliminated by requiring that the station and the 
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source are on one line. Alternatively, we can use Lg waves which are not very sensitive to the 
focal mechanism (true ??). This method is used in program SPEC. 
 

If Q is assumed independent of frequency, the ratio of A2 and A1 can be written 
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In this case, the spectral ratio is linearly related to the frequency so Q can be determined from 
the slope of the curve ln(A2/A1) versus f.  This method is currently not implemented in 
SEISAN  

,I� �LV�QRW�FRQVWDQW��WKH�VSHFWUD�ZLOO�KDYH�WR�EH�FRUUHFWHG�IRU� �EHIRUH�DQDO\VLV�RU� �ZLOO�

have to be determined in a multiple station-event  inversion, see below. Note that we still 
DVVXPH�WKDW�DOO�VLWH�GHSHQGHQW�HIIHFWV�DUH�LQFOXGHG�LQ� � 

 
  
Multiple station method for Q-determination 
 

It as assumed, that we have k events recorded at l stations. Equation (2.9) can then be 
written as a series of equations 
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For a given frequency, there will be one equation for each station-event pair. The unknowns 
are k source terms A0k��O�VLWH�WHUPV� l and Q(f). This set of linear equations can be solved with 
standard methods and in addition to Q(f), also the site terms are determined. The geometrical 
spreading term might have to be replaced by a more detailed term, see section below. 
However, this does not change the set up and solution to the equations.  
 
What about effect of source radiation, assumed averaged out ? 
Program QLG in SEISAN is using this method. 
 
 
 
4.0 Geometrical spreading in SEISAN 
 

In the above description, it was assumed that geometrical spreading could be described 
on the form  
 

β−= tAtA 0)(  or equivalent β−= rArA 0)(      (4.1) 
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where r is the hypocentral distance: 
 

22 xhr +=  
 
and h is the hypocentral depth and x the epicentral distance. 
 

This formulation assumes a constant type of geometrical spreading independent of 
hypocentral distance. For S-waves, body waves�DUH�RIWHQ�DVVXPHG�IRU�WKH�QHDU�ILHOG��  ���DQG�
VXUIDFH�ZDYHV�IRU�ODUJHU�GLVWDQFHV��  �����XQGHU�WKH�DVVXPSWLRQ�WKDW�WKH�6-waves are 
dominated by Lg waves  and (4.1) is commonly written 
 

r
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1
)( =       for r < r0        (4.2) 

xrr
rA

1
)( =   for r ��U0 

where r0 often is around 100 km. This works fine for surface focus events and S-Lg waves. 
However, in all the methods presented above, there is no limitation to use only S-Lg waves 
and shallow events, so (22) is not general enough.  If e.g. an S-wave is recorded from a deep 
earthquake at more than r0 epicentral distance, it would not be appropriate to use surface wave 
spreading. Thus in SEISAN, the geometrical spreading will also depend on the hypocentral 
depth and type of wave. Until depth h1, and at larger distances, surface wave spreading is 
assumed, below depth h2, body wave spreading is assumed and in between, an interpolation is 
made. In SEISAN we have thus defined a modified version of (22). The geometrical 
spreading is defined as  
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where gd is called the geodistance defined as 
 
P- waves:  gd = r          for any x and h 
 
S- waves: gd = r          for x < x0 and any h 
  gd = r          for any x when h ��K2 

                             0xxgd =     for x ��[0 and h<h1 

  r
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The parameters h1 ,h2 and x0 can be set in SEISAN.DEF. The default values are h1=50 km, 
h2=100 km and x0=100 km. There is not a specific scientific reason for (4.3), however it does 
provide a smooth transition between surface and body wave spreading as a function of depth 
and distance and it includes the earlier used relations (4.2). 
Currently, only MULPLT is using geo distance in spectral analysis. 
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5.0 Seismic source model as used in Seisan 
 
 The Brune source model (Brune, 1970) is used which will give the following observed 
displacement spectrum at a distance r (m) and depth h (m), where the travel time is t 
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where M0 (Nm) is the seismic moment, the factor 0.6 accounts for average radiation pattern 
HIIHFW��WKH�IDFWRU�����LV�WKH�HIIHFW�RI�WKH�IUHH�VXUIDFH�� �LV�WKH�GHQVLW\��NJ�P

3) and v is the 
velocity (m/s) (path ?????) at the source (P or S-velocity depending on spectrum). In SEISAN 
parameter files, the units are g/cm3 and km/s. The calculated spectrum Dc, is usually just 
corrected for attenuation and the corner frequency f0�DQG�VSHFWUDO�IODW�OHYHO� 0 (ms) are the 
observed parameters: 
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and the seismic moment can then be calculated as 
 

),(*0.2*6.0
4 3
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In case of simple 1/r body wave spreading (r in m), (5.3) would be 
 

0.2*6.0

4 3
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πρΩ
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In the literature, the effect of the average correction for radiation pattern varies between 0.55 
to 0.85. According to Aki and Richards, the average is 0.52 and 0.63 for P and S-waves 
respectively. The effect for the free surface assumes a vertical incidence, which is an 
approximation. However, due to the low velocity layers near the surface, the incidence is not 
far from vertical. The effect is the same for P and S-waves.  
 
Nothing has been mentioned about which component to use. The original Brune spectrum 
assumed SH waves so that should indicate that horizontal components should be used.  On 
solid rock, experimental studies show that, for S or Lg-waves, there is little difference 
between the amplitude on the 3 components. However near surface amplifications is common 
(as determined with the SPEC program) which mainly affects the horizontal components. So 
it is safest to always use the vertical component which is any case is what should be used for 
the P-wave spectrum. Some studies use an average of all 3 components when making S-wave 
spectra. 
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The source radius a, is calculated as 
 

0/35.0 fva s=         (5.5) 

 
where  the radius is m or km if the velocity is m/s or km/s 
 
The factor used here (0.35) also can have various values. Brune (1970) uses a value of  0.37 
for S-waves,  Maderiaga (1976) uses 0.32 for P-waves and 0.21 for S-waves. In SEISAN, we 
have not assumed that P and S-waves can have different corner frequencies although this has 
been observed in some studies (e.g. Abercrombie, 1995) and predicted theoretically 
(Maderiaga, 1976). 
 
The stress drop in bars (1 bar=106 dyne/cm2) is calculated as (Eshelby,1957) 
 

14
30 10*

1

16

7 −=∆
a

Mσ        (5.6) 

 
Since the original formula assumes that moment is in dyne-cm and radius in cm the 
conversion factor 10-14 is needed for MKS units and is calculated as  
 
((107 dyne cm /Nm)*1 /(105cm/km)3 )/ 106(dynes/cm2)/bar = 10-14    since 
 
1 Nm = 105dynes * 100 cm = 107 dyne-cm. 
 
 
 
 
 
Self similarity 
 
The generally accepted theory of self similarity predicts a constant stress drop for earthquakes 
of different size in the same tectonic environment. From (5.6) and (5.5) we then get 
 

3
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−≈≈ faM          (5.7) 

 
or in terms of moment magnitude Mw   
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wMf 5.0)log( 0 −≈         (5.9) 

 
In terms of stress drop we can write 
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)log(35.1)log(3)log()log( 000 fMfM w +≈+≈∆σ    (5.11) 

 
 
If the near surface attenuation is not accounted for, the corner frequency might be close to 
constant or not increasing fast enough when the magnitude goes down so plotting the 
logarithm of the stress drop versus Mw will give a straight line with slope 1.5. Alternatively 
relation (5.9) can be checked. Program MAG can be used for both of these plots. 
 
 
Magnitude- corner frequency scaling relationship for the constant stress drop model 
 
 
The moment  magnitude is calculated as 
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M

M w        (5.12) 

 
Combining with  
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gives 
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)log(67.0)log(2)log(290.2 0 σ∆+−+= fvM sw    and   (5.16) 

 

ws Mvf 5.0)log()log(33.045.1)log( 0 −+∆+= σ     (5.17) 

 
Assuming a stress drop of 10 bar and a S-velocity of 3.5 km/s gives 
 

)log(267.4 0fM w −=    or        (5.18) 

 
 

wMf 5.000.2)log( 0 −=             stress drop 1 bar     (5.19) 

wMf 5.023.2)log( 0 −=              stress drop 5 bar 

wMf 5.033.2)log( 0 −=              stress drop 10 bar 

wMf 5.066.2)log( 0 −=             stress drop 100 bar 

 



 12

 
This relation can be compared to a similar relation derived by Eaton (1977) (taken from Lee 
and Stewart, 1981) for ML assuming a stress drop of 5 bars.  
 
 

LMf 5.01.2)log( 0 −=        (5.20) 

 
As we see, it is almost identical to the above Mw  relation for stress drop 5 bars. These 
relations should at least give a hint whether an observe corner frequency is ‘reasonable’ or 
when working with small earthquakes, whether near surface attenuation has severely limited 
the high frequency resolution. 
 
 
Expected scaling between ML and Mw for small earthquakes 
 
The amplitude used to determine ML is determined on the flat part of the spectrum and is 
therefore expected to be linearly proportional to 0 and therefore M0. So ML must be linearly 
proportional to log(M0) and we get 
 
 

5.1
06.6

5.1

)log( 0 L
w

MM
M ≈−=       (5.21) 

or 
 

wL MM 5.1≈          (5.22) 
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